--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-1.7B tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer model-index: - name: HuggingFaceTB/SmolLM2-1.7B results: [] --- # HuggingFaceTB/SmolLM2-1.7B This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.48.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.21.0