--- license: apache-2.0 base_model: google-t5/t5-large tags: - generated_from_trainer metrics: - bleu model-index: - name: fft-t5-large/adversarial_qa_dbert_based_on results: [] --- # fft-t5-large/adversarial_qa_dbert_based_on This model is a fine-tuned version of [google-t5/t5-large](https://huggingface.co/google-t5/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1381 - Exact Match: 0.3467 - Bleu: 0.3083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:| | 1.0162 | 1.0 | 63 | 0.7607 | 0.2754 | 0.2749 | | 0.3929 | 2.0 | 126 | 0.7943 | 0.2959 | 0.2412 | | 0.1542 | 3.0 | 189 | 1.0053 | 0.3018 | 0.2720 | | 0.0544 | 4.0 | 252 | 1.1005 | 0.3457 | 0.3185 | | 0.0239 | 5.0 | 315 | 1.1381 | 0.3467 | 0.3083 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1