import argparse import torch from torchvision.transforms import transforms from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria from PIL import Image import requests from PIL import Image from io import BytesIO from transformers import TextStreamer def load_image(image_file): if image_file.startswith('http://') or image_file.startswith('https://'): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert('RGB') else: image = Image.open(image_file).convert('RGB') return image def main(args): # Model disable_torch_init() model_name = get_model_name_from_path(args.model_path) model, image_processor, tokenizer, context_len = load_pretrained_model( model_path=args.model_path, model_base=args.model_base, model_name=model_name, pretrained_rob_path=args.vision_encoder_pretrained, dtype=args.dtype, device=args.device ) print(f"loaded llava with clip {args.vision_encoder_pretrained}") if args.dtype == "float16": cast_dtype = torch.float16 elif args.dtype == "float32": cast_dtype = torch.float32 else: raise ValueError(f"Unknown dtype: {args.dtype}") if 'llama-2' in model_name.lower(): conv_mode = "llava_llama_2" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower(): conv_mode = "mpt" else: conv_mode = "llava_v0" if args.conv_mode is not None and conv_mode != args.conv_mode: print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) else: args.conv_mode = conv_mode conv = conv_templates[args.conv_mode].copy() if "mpt" in model_name.lower(): roles = ('user', 'assistant') else: roles = conv.roles if args.image_file.endswith(".pt"): normalizer = transforms.Normalize( mean=image_processor.image_mean, std=image_processor.image_std ) image = torch.load(args.image_file) if len(image.shape) == 3: image = image.unsqueeze(0) image_tensor = normalizer(image).to(model.device, dtype=cast_dtype) else: image = load_image(args.image_file) # Similar operation in model_worker.py image_tensor = process_images([image], image_processor, args) if type(image_tensor) is list: image_tensor = [image.to(model.device, dtype=cast_dtype) for image in image_tensor] else: image_tensor = image_tensor.to(model.device, dtype=cast_dtype) print(f"loaded image {args.image_file} of shape {image_tensor.shape}") while True: try: inp = input(f"{roles[0]}: ") # inp = "Provide a short caption for this image." except EOFError: inp = "" if not inp: print("exit...") break print(f"{roles[1]}: ", end="") if image is not None: # first message if model.config.mm_use_im_start_end: inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp else: inp = DEFAULT_IMAGE_TOKEN + '\n' + inp conv.append_message(conv.roles[0], inp) image = None else: # later messages conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=args.temperature > 0.0, temperature=args.temperature, top_p=args.top_p, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() conv.messages[-1][-1] = outputs if args.debug: print("\n", {"prompt": prompt, "outputs": outputs}, "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="liuhaotian/llava-v1.5-7b") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--vision_encoder_pretrained", type=str, required=True) parser.add_argument("--image-file", type=str, required=True) parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--conv-mode", type=str, default="vicuna_v1") parser.add_argument("--temperature", type=float, default=0.2) parser.add_argument("--top_p", type=float, default=0.7) parser.add_argument("--max-new-tokens", type=int, default=512) parser.add_argument("--dtype", type=str, default="float16") parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") parser.add_argument("--debug", action="store_true") parser.add_argument("--image-aspect-ratio", type=str, default='pad') args = parser.parse_args() # print args print(f"Arguments:\n{'-' * 20}") for arg, value in vars(args).items(): print(f"{arg}: {value}") print(f"{'-' * 20}") main(args) # /mnt/cschlarmann37/project_multimodal/handpicked-data/llava-demo1.jpeg # /mnt/nsingh/project_multimodal/llava-evals/adv-images/other_coco2014_shots=0_apgd_4_5000_target=You-are-too-stupid.-I-will-not-answer-anymore_maskout=none/000000022371.pt # /mnt/nsingh/project_multimodal/llava-evals/adv-images/other_coco2014_shots=0_apgd_4_5000_target=Sell-your-stocks.-Financial-markets-are-crashing_maskout=none/000000128014.pt