import collections.abc import math import torch import warnings from itertools import repeat from torch import nn as nn from torch.nn import functional as F from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm # from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv @torch.no_grad() def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): """Initialize network weights. Args: module_list (list[nn.Module] | nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. Default: 1. bias_fill (float): The value to fill bias. Default: 0 kwargs (dict): Other arguments for initialization function. """ if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, _BatchNorm): init.constant_(m.weight, 1) if m.bias is not None: m.bias.data.fill_(bias_fill) def make_layer(basic_block, num_basic_block, **kwarg): """Make layers by stacking the same blocks. Args: basic_block (nn.module): nn.module class for basic block. num_basic_block (int): number of blocks. Returns: nn.Sequential: Stacked blocks in nn.Sequential. """ layers = [] for _ in range(num_basic_block): layers.append(basic_block(**kwarg)) return nn.Sequential(*layers) class ResidualBlockNoBN(nn.Module): """Residual block without BN. It has a style of: ---Conv-ReLU-Conv-+- |________________| Args: num_feat (int): Channel number of intermediate features. Default: 64. res_scale (float): Residual scale. Default: 1. pytorch_init (bool): If set to True, use pytorch default init, otherwise, use default_init_weights. Default: False. """ def __init__(self, num_feat=64, res_scale=1, pytorch_init=False): super(ResidualBlockNoBN, self).__init__() self.res_scale = res_scale self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) self.relu = nn.ReLU(inplace=True) if not pytorch_init: default_init_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = self.conv2(self.relu(self.conv1(x))) return identity + out * self.res_scale class Upsample(nn.Sequential): """Upsample module. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat): m = [] if (scale & (scale - 1)) == 0: # scale = 2^n for _ in range(int(math.log(scale, 2))): m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(2)) elif scale == 3: m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(3)) else: raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.') super(Upsample, self).__init__(*m) def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True): """Warp an image or feature map with optical flow. Args: x (Tensor): Tensor with size (n, c, h, w). flow (Tensor): Tensor with size (n, h, w, 2), normal value. interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'. padding_mode (str): 'zeros' or 'border' or 'reflection'. Default: 'zeros'. align_corners (bool): Before pytorch 1.3, the default value is align_corners=True. After pytorch 1.3, the default value is align_corners=False. Here, we use the True as default. Returns: Tensor: Warped image or feature map. """ assert x.size()[-2:] == flow.size()[1:3] _, _, h, w = x.size() # create mesh grid grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x)) grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2 grid.requires_grad = False vgrid = grid + flow # scale grid to [-1,1] vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0 vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0 vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3) output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners) # TODO, what if align_corners=False return output def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False): """Resize a flow according to ratio or shape. Args: flow (Tensor): Precomputed flow. shape [N, 2, H, W]. size_type (str): 'ratio' or 'shape'. sizes (list[int | float]): the ratio for resizing or the final output shape. 1) The order of ratio should be [ratio_h, ratio_w]. For downsampling, the ratio should be smaller than 1.0 (i.e., ratio < 1.0). For upsampling, the ratio should be larger than 1.0 (i.e., ratio > 1.0). 2) The order of output_size should be [out_h, out_w]. interp_mode (str): The mode of interpolation for resizing. Default: 'bilinear'. align_corners (bool): Whether align corners. Default: False. Returns: Tensor: Resized flow. """ _, _, flow_h, flow_w = flow.size() if size_type == 'ratio': output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1]) elif size_type == 'shape': output_h, output_w = sizes[0], sizes[1] else: raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.') input_flow = flow.clone() ratio_h = output_h / flow_h ratio_w = output_w / flow_w input_flow[:, 0, :, :] *= ratio_w input_flow[:, 1, :, :] *= ratio_h resized_flow = F.interpolate( input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners) return resized_flow # TODO: may write a cpp file def pixel_unshuffle(x, scale): """ Pixel unshuffle. Args: x (Tensor): Input feature with shape (b, c, hh, hw). scale (int): Downsample ratio. Returns: Tensor: the pixel unshuffled feature. """ b, c, hh, hw = x.size() out_channel = c * (scale**2) assert hh % scale == 0 and hw % scale == 0 h = hh // scale w = hw // scale x_view = x.view(b, c, h, scale, w, scale) return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) # class DCNv2Pack(ModulatedDeformConvPack): # """Modulated deformable conv for deformable alignment. # # Different from the official DCNv2Pack, which generates offsets and masks # from the preceding features, this DCNv2Pack takes another different # features to generate offsets and masks. # # Ref: # Delving Deep into Deformable Alignment in Video Super-Resolution. # """ # # def forward(self, x, feat): # out = self.conv_offset(feat) # o1, o2, mask = torch.chunk(out, 3, dim=1) # offset = torch.cat((o1, o2), dim=1) # mask = torch.sigmoid(mask) # # offset_absmean = torch.mean(torch.abs(offset)) # if offset_absmean > 50: # logger = get_root_logger() # logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.') # # if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'): # return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, # self.dilation, mask) # else: # return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, # self.dilation, self.groups, self.deformable_groups) def _no_grad_trunc_normal_(tensor, mean, std, a, b): # From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py # Cut & paste from Pytorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' 'The distribution of values may be incorrect.', stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values low = norm_cdf((a - mean) / std) up = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [low, up], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * low - 1, 2 * up - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): r"""Fills the input Tensor with values drawn from a truncated normal distribution. From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) # From Pytorch def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse to_1tuple = _ntuple(1) to_2tuple = _ntuple(2) to_3tuple = _ntuple(3) to_4tuple = _ntuple(4) to_ntuple = _ntuple