--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - asierhv/composite_corpus_eu_v2.1 metrics: - wer model-index: - name: Whisper Tiny Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: asierhv/composite_corpus_eu_v2.1 type: asierhv/composite_corpus_eu_v2.1 metrics: - name: Wer type: wer value: 14.849506681653555 --- # Whisper Tiny Basque This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the asierhv/composite_corpus_eu_v2.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3719 - Wer: 14.8495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.75e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.586 | 0.1 | 1000 | 0.6249 | 34.1639 | | 0.3145 | 0.2 | 2000 | 0.5048 | 25.2591 | | 0.225 | 0.3 | 3000 | 0.4839 | 22.0557 | | 0.3003 | 0.4 | 4000 | 0.4540 | 20.3072 | | 0.132 | 0.5 | 5000 | 0.4574 | 19.0146 | | 0.1588 | 0.6 | 6000 | 0.4380 | 17.8219 | | 0.1841 | 0.7 | 7000 | 0.4395 | 16.6667 | | 0.143 | 0.8 | 8000 | 0.3719 | 15.4490 | | 0.0967 | 0.9 | 9000 | 0.3685 | 15.1368 | | 0.1059 | 1.0 | 10000 | 0.3719 | 14.8495 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.3.1.dev0 - Tokenizers 0.21.0