--- base_model: allenai/specter2_base library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:6574 - loss:MultipleNegativesRankingLoss widget: - source_sentence: sigma N protein interactions sentences: - 'Smoking Relapse After Lung Transplantation: Is a Second Transplant Justified? ' - 'Core RNA polymerase and promoter DNA interactions of purified domains of sigma N: bipartite functions. ' - 'Protein-protein interactions mapped by artificial proteases: where sigma factors bind to RNA polymerase. ' - source_sentence: Frailty pathway co-design sentences: - 'High-Sensitivity Cardiac Troponin I Levels in Normal and Hypertensive Pregnancy. ' - 'The systematic approach to improving care for Frail Older Patients (SAFE) study: A protocol for co-designing a frail older person''s pathway. ' - 'Frailty: successful clinical practice implementation. ' - source_sentence: Diurnal lipid metabolism in lactating sheep sentences: - 'Interpreting and applying the EUFEST results using number needed to treat: antipsychotic effectiveness in first-episode schizophrenia. ' - 'Diurnal variations in the concentration, arteriovenous difference, extraction ratio, and uptake of 3-hydroxybutyrate and plasma free fatty acids in the hind limb of lactating sheep. ' - 'Diurnal regulation of milk lipid production and milk secretion in the rat: effect of dietary protein and energy restriction. ' - source_sentence: Ectopic gastric mucosa sentences: - '[Ectopic cardia and gastroesophageal reflux]. ' - 'A bacterial toxicity assay performed with microplates, microluminometry and Microtox reagent. ' - 'Gastric polyp. ' - source_sentence: monograph editing sentences: - 'Monographs editor. ' - 'Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior. ' - 'The editing life. ' --- # SentenceTransformer based on allenai/specter2_base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'monograph editing', 'Monographs editor. ', 'The editing life. ', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### json * Dataset: json * Size: 6,574 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------|:--------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------| | α-Alumina Nanoparticle Grafting | Grafting PMMA Brushes from α-Alumina Nanoparticles via SI-ATRP. | Mesoporous alumina from colloidal biotemplating of Al clusters. | | Congenital candidiasis septic shock | Congenital candidiasis presenting as septic shock without rash. | Congenital cutaneous candidiasis: clinical presentation, pathogenesis, and management guidelines. | | Chronic Venous Occlusion | Anatomic response of canine hindlimb vasculature to chronic venous occlusion. | Chronic venous insufficiency. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `lr_scheduler_type`: cosine_with_restarts - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: cosine_with_restarts - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0145 | 1 | 2.8777 | | 0.0290 | 2 | 2.8723 | | 0.0435 | 3 | 2.7432 | | 0.0580 | 4 | 2.8806 | | 0.0725 | 5 | 2.3007 | | 0.0870 | 6 | 2.2423 | | 0.1014 | 7 | 1.995 | | 0.1159 | 8 | 1.5115 | | 0.1304 | 9 | 1.41 | | 0.1449 | 10 | 1.243 | | 0.1594 | 11 | 1.1634 | | 0.1739 | 12 | 1.1996 | | 0.1884 | 13 | 1.3653 | | 0.2029 | 14 | 1.5704 | | 0.2174 | 15 | 1.3556 | | 0.2319 | 16 | 1.4051 | | 0.2464 | 17 | 1.0999 | | 0.2609 | 18 | 1.0826 | | 0.2754 | 19 | 1.0449 | | 0.2899 | 20 | 1.0517 | | 0.3043 | 21 | 0.9716 | | 0.3188 | 22 | 1.1993 | | 0.3333 | 23 | 1.1375 | | 0.3478 | 24 | 0.9875 | | 0.3623 | 25 | 0.7656 | | 0.3768 | 26 | 1.2773 | | 0.3913 | 27 | 0.7802 | | 0.4058 | 28 | 0.882 | | 0.4203 | 29 | 1.0534 | | 0.4348 | 30 | 0.9073 | | 0.4493 | 31 | 0.916 | | 0.4638 | 32 | 0.9702 | | 0.4783 | 33 | 1.2868 | | 0.4928 | 34 | 1.0854 | | 0.5072 | 35 | 0.8832 | | 0.5217 | 36 | 0.9139 | | 0.5362 | 37 | 0.9032 | | 0.5507 | 38 | 0.965 | | 0.5652 | 39 | 0.7222 | | 0.5797 | 40 | 0.6682 | | 0.5942 | 41 | 0.8562 | | 0.6087 | 42 | 0.9248 | | 0.6232 | 43 | 0.9867 | | 0.6377 | 44 | 0.7328 | | 0.6522 | 45 | 0.7506 | | 0.6667 | 46 | 0.7952 | | 0.6812 | 47 | 0.7979 | | 0.6957 | 48 | 1.0043 | | 0.7101 | 49 | 1.0428 | | 0.7246 | 50 | 0.8772 | | 0.7391 | 51 | 0.6598 | | 0.7536 | 52 | 0.7804 | | 0.7681 | 53 | 0.599 | | 0.7826 | 54 | 0.7974 | | 0.7971 | 55 | 0.7489 | | 0.8116 | 56 | 0.8701 | | 0.8261 | 57 | 0.8903 | | 0.8406 | 58 | 0.7223 | | 0.8551 | 59 | 0.925 | | 0.8696 | 60 | 1.0247 | | 0.8841 | 61 | 0.7531 | | 0.8986 | 62 | 0.9684 | | 0.9130 | 63 | 0.7462 | | 0.9275 | 64 | 0.8555 | | 0.9420 | 65 | 0.8016 | | 0.9565 | 66 | 0.7603 | | 0.9710 | 67 | 1.1052 | | 0.9855 | 68 | 0.9505 | | 1.0 | 69 | 0.6259 | ### Framework Versions - Python: 3.9.19 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.5.0 - Accelerate: 1.0.1 - Datasets: 2.19.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```