---
base_model: allenai/specter2_base
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6574
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: sigma N protein interactions
sentences:
- 'Smoking Relapse After Lung Transplantation: Is a Second Transplant Justified? '
- 'Core RNA polymerase and promoter DNA interactions of purified domains of sigma
N: bipartite functions. '
- 'Protein-protein interactions mapped by artificial proteases: where sigma factors
bind to RNA polymerase. '
- source_sentence: Frailty pathway co-design
sentences:
- 'High-Sensitivity Cardiac Troponin I Levels in Normal and Hypertensive Pregnancy. '
- 'The systematic approach to improving care for Frail Older Patients (SAFE) study:
A protocol for co-designing a frail older person''s pathway. '
- 'Frailty: successful clinical practice implementation. '
- source_sentence: Diurnal lipid metabolism in lactating sheep
sentences:
- 'Interpreting and applying the EUFEST results using number needed to treat: antipsychotic
effectiveness in first-episode schizophrenia. '
- 'Diurnal variations in the concentration, arteriovenous difference, extraction
ratio, and uptake of 3-hydroxybutyrate and plasma free fatty acids in the hind
limb of lactating sheep. '
- 'Diurnal regulation of milk lipid production and milk secretion in the rat: effect
of dietary protein and energy restriction. '
- source_sentence: Ectopic gastric mucosa
sentences:
- '[Ectopic cardia and gastroesophageal reflux]. '
- 'A bacterial toxicity assay performed with microplates, microluminometry and Microtox
reagent. '
- 'Gastric polyp. '
- source_sentence: monograph editing
sentences:
- 'Monographs editor. '
- 'Maternal stress and high-fat diet effect on maternal behavior, milk composition,
and pup ingestive behavior. '
- 'The editing life. '
---
# SentenceTransformer based on allenai/specter2_base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'monograph editing',
'Monographs editor. ',
'The editing life. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,574 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
α-Alumina Nanoparticle Grafting
| Grafting PMMA Brushes from α-Alumina Nanoparticles via SI-ATRP.
| Mesoporous alumina from colloidal biotemplating of Al clusters.
|
| Congenital candidiasis septic shock
| Congenital candidiasis presenting as septic shock without rash.
| Congenital cutaneous candidiasis: clinical presentation, pathogenesis, and management guidelines.
|
| Chronic Venous Occlusion
| Anatomic response of canine hindlimb vasculature to chronic venous occlusion.
| Chronic venous insufficiency.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters