{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fef45b895c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682892492472328936, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEgHiz/b5Fa/HPCcvSYCPz+yWIO/YI6vv4/AOb2ErNW/6FxZvWR5AMAamsU/MhfIvwjXR7+Z7ZI/wr6LPgmF774f5xQ/lR0KQIZUhj18QpS/Pou4P26iWkCgT6c/wEuCQBEb2b/O9ak+MwUPwFEQtb/3hF4/OZPiPhMHKz+GBek/Di47vtO/uL6rXqW+e84fv3/FOz6lK7e/FIrKPoGxoz/vkmq+95c4v7u9gj4/R40+mJ+kP+C0zL8M3XG/JrcGvmHlZr80n8o99j3BP6/HPL8RG9m/zvWpPkId5T6W+TQ/PmBsPrk7uz/e8sw+C2L/vWlfWL7Er4O/z0WEPohcjb9IV7Y8dAeEP7m8OD92uBvAgeKrv1mylD8xTcU884j3vmrhGT9gQwlARQUWPxMuvb/5amm/xh/hPp1HMb+UBBNAERvZv871qT5CHeU+URC1vzuOcT+k3Pu+P7OLPlRugj8CpwW/7cqnPwk3EL4Y2Pm+ZEZkP3RHmLy5/gc/vS65PXIpVL/011DAJq6LvfEsZL+UCA8/GCn0v43hGr/mILQ+zdxZvwC2bj5G0Gy+CKUhv1ruFj9QzEDAQh3lPlEQtb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA+QHe1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKijAPQAAAADxYuC/AAAAAHfaL70AAAAAGd/1PwAAAABodwY+AAAAADm66D8AAAAAazYBPQAAAABZmN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnPIdNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNCC/LwAAAAAqMn7vwAAAACr9VE9AAAAANzj6D8AAAAAclqevQAAAABS8Pk/AAAAACWJzr0AAAAAO2b2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDYF7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC+V/o9AAAAALJp6r8AAAAADxbwvQAAAAAgO/c/AAAAAJeLbb0AAAAAL7DmPwAAAADEs8U9AAAAAI9L3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzQpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEoALvQAAAABDouu/AAAAAI66ZT0AAAAAWxvnPwAAAAD6uA+9AAAAAFs1AUAAAAAArisOvgAAAADusua/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/iE2LpA2SMAWyUTegDjAF0lEdAq0gacqe9SXV9lChoBkdAoUiQhY/3WWgHTegDaAhHQKtK2IpH7P91fZQoaAZHQKFzf95Qgs9oB03oA2gIR0CrTTL876pHdX2UKGgGR0ChbhtBfKISaAdN6ANoCEdAq01ade6ZpnV9lChoBkdAoLNpcmjTKGgHTegDaAhHQKtUF/6wdKd1fZQoaAZHQKJW4yk9ECxoB03oA2gIR0CrVqV2zOX3dX2UKGgGR0Cg8ACjtXxOaAdN6ANoCEdAq1j7HOryUnV9lChoBkdAoTK1YB/7SGgHTegDaAhHQKtZIinpB5Z1fZQoaAZHQJ+6XKISDh9oB03oA2gIR0CrYTMImgJ1dX2UKGgGR0CgvNQzUI9laAdN6ANoCEdAq2UkOy3TeHV9lChoBkdAoSHR6lchT2gHTegDaAhHQKtoCXUH6dl1fZQoaAZHQKEkapQ1rIpoB03oA2gIR0CraDEgW8AadX2UKGgGR0CfnsV81Gb1aAdN6ANoCEdAq27fD1oQF3V9lChoBkdAoANSp97Wu2gHTegDaAhHQKtxZCbc45t1fZQoaAZHQKBzpf0mMOxoB03oA2gIR0Crc7KMm4RVdX2UKGgGR0Chjanww0wbaAdN6ANoCEdAq3PYrOJLunV9lChoBkdAoBkQKlYU4GgHTegDaAhHQKt6gaIeo1l1fZQoaAZHQKAwv2VVxS5oB03oA2gIR0CrfhkWRA8kdX2UKGgGR0CggSEJBw+/aAdN6ANoCEdAq4Gx3JPqLXV9lChoBkdAoW7t/hESd2gHTegDaAhHQKuB7cxCY1J1fZQoaAZHQKHgy7L+xW1oB03oA2gIR0CriautfXwtdX2UKGgGR0Chu4+c6NlzaAdN6ANoCEdAq4wndVNpNHV9lChoBkdAoGTNS88La2gHTegDaAhHQKuOgneBQN11fZQoaAZHQKEombzbvgFoB03oA2gIR0CrjqqYqoZRdX2UKGgGR0CgS8sYVIqcaAdN6ANoCEdAq5VpwCKaX3V9lChoBkdAoChqGetjkWgHTegDaAhHQKuX5n9Nvfl1fZQoaAZHQJmwhFBppN9oB03oA2gIR0CrmuAAhje9dX2UKGgGR0Cc02vq1PWQaAdN6ANoCEdAq5sZWYF7lnV9lChoBkdAoD3c0P6KtWgHTegDaAhHQKukb1K5Cnh1fZQoaAZHQKCR2bfgrH5oB03oA2gIR0CrpvhZpztDdX2UKGgGR0Ce4aCPZIxyaAdN6ANoCEdAq6lTf779AHV9lChoBkdAoCFthkRSP2gHTegDaAhHQKupepAlfJF1fZQoaAZHQKBlFujRD1JoB03oA2gIR0CrsEWU8mrsdX2UKGgGR0CUomIKc/dJaAdN6ANoCEdAq7Lr2criEXV9lChoBkdAoJRezSkTH2gHTegDaAhHQKu1P3SKFZh1fZQoaAZHQKDMPQbdadNoB03oA2gIR0CrtWmKZUkwdX2UKGgGR0CeF+j7yhBaaAdN6ANoCEdAq7773RG+bnV9lChoBkdAmhKdmQKa5WgHTegDaAhHQKvCb2vjfel1fZQoaAZHQJju7AuZkTZoB03oA2gIR0CrxNPvBrN4dX2UKGgGR0CSRabvw3HaaAdN6ANoCEdAq8T7lkpZwHV9lChoBkdAl3jgBHTZx2gHTegDaAhHQKvMAeZG8VZ1fZQoaAZHQJfzBrbg0j1oB03oA2gIR0CrzpjSofjkdX2UKGgGR0CV+dY9Pk7waAdN6ANoCEdAq9D+hXbM5nV9lChoBkdAkt3F7tzCDWgHTegDaAhHQKvRLB5X2dx1fZQoaAZHQJlTZWEK3NNoB03oA2gIR0Cr2SQ22oegdX2UKGgGR0CbK6azNUwSaAdN6ANoCEdAq90hdOZb6nV9lChoBkdAmv7gRChN/WgHTegDaAhHQKvgSSOinHh1fZQoaAZHQJZgXkT6BRRoB03oA2gIR0Cr4HAJTl1bdX2UKGgGR0Cee/9Vmz0IaAdN6ANoCEdAq+cu9nK4hHV9lChoBkdAns0qasp5NWgHTegDaAhHQKvpuzeoDPp1fZQoaAZHQJr/5ahYeT5oB03oA2gIR0Cr7BJAt4A0dX2UKGgGR0Cbjtbx3FDOaAdN6ANoCEdAq+w7GLk0anV9lChoBkdAn6WE8mrsB2gHTegDaAhHQKvy6WQfZEl1fZQoaAZHQJ0eM8Md92JoB03oA2gIR0Cr9lqynk1edX2UKGgGR0CapTvZRKpUaAdN6ANoCEdAq/n5hfBvaXV9lChoBkdAn0RYvzvqkmgHTegDaAhHQKv6NzT4L1F1fZQoaAZHQJ7aNGOMl1NoB03oA2gIR0CsAi28IzFddX2UKGgGR0CgQ6jNhVlxaAdN6ANoCEdArASuU4aP0nV9lChoBkdAnE73yqdYn2gHTegDaAhHQKwHDLQHAyp1fZQoaAZHQJmUJiy6cy5oB03oA2gIR0CsBzNMXaakdX2UKGgGR0CgUEJSJj2BaAdN6ANoCEdArA3ibtqpLnV9lChoBkdAn4vGWIGhVWgHTegDaAhHQKwQaCNCJGh1fZQoaAZHQKCyHZgXuVpoB03oA2gIR0CsEzOYQarFdX2UKGgGR0CfnzGKQ7tBaAdN6ANoCEdArBNuhPCVKXV9lChoBkdAn55qYqoZRGgHTegDaAhHQKwdAqSX+l11fZQoaAZHQJ5gxZJTVDtoB03oA2gIR0CsH4JcHGCJdX2UKGgGR0CgZUCdat9yaAdN6ANoCEdArCHSD28IzHV9lChoBkdAnCio8dPtUmgHTegDaAhHQKwh+D0163R1fZQoaAZHQJ+UQNsnAqNoB03oA2gIR0CsKLrkCFK1dX2UKGgGR0CdNv76pHZsaAdN6ANoCEdArCs4K+i8F3V9lChoBkdAoFSxK+SKWWgHTegDaAhHQKwtj4TK1Xx1fZQoaAZHQKCms+mm+CdoB03oA2gIR0CsLbYZl4C7dX2UKGgGR0CeQtfTTfBOaAdN6ANoCEdArDa9fPX05HV9lChoBkdAnenODJ2dNGgHTegDaAhHQKw6aRMewLV1fZQoaAZHQKCxh8VHnU5oB03oA2gIR0CsPMG6PKdQdX2UKGgGR0Cfo8Hxz7uVaAdN6ANoCEdArDztu76HkHV9lChoBkdAmgXBpHqeLGgHTegDaAhHQKxDn+BpYcN1fZQoaAZHQJ48fqu8sc1oB03oA2gIR0CsRi88La24dX2UKGgGR0CbCSQCCBf8aAdN6ANoCEdArEiDZOBUaXV9lChoBkdAn/NZ6hQFcWgHTegDaAhHQKxIqsGxD9h1fZQoaAZHQJ6oiWnjyWloB03oA2gIR0CsUDqnvUjLdX2UKGgGR0CNgTA+pwS8aAdN6ANoCEdArFRZXKbKBHV9lChoBkdAhuDTvRZ2ZGgHTegDaAhHQKxY/JQLux91fZQoaAZHQIdlYuyu6mRoB03oA2gIR0CsWUgCwKSgdX2UKGgGR0CgohshgVoIaAdN6ANoCEdArGK4msvIwXV9lChoBkdAiL5CcwxnF2gHTegDaAhHQKxlTdiUgSx1fZQoaAZHQKJHe3KB/ZxoB03oA2gIR0CsZ6QokRjCdX2UKGgGR0CgbUGVzIV/aAdN6ANoCEdArGfL7Q9idHV9lChoBkdAna20aya/h2gHTegDaAhHQKxuniGWUr11fZQoaAZHQJCeQjC53C9oB03oA2gIR0Csca9a2WpqdX2UKGgGR0CZzvAYHgP3aAdN6ANoCEdArHVALG7z1HV9lChoBkdAmPI2us90R2gHTegDaAhHQKx1frkbPyF1fZQoaAZHQJXuqekHlfZoB03oA2gIR0CsfhZccENfdX2UKGgGR0CQKt+fh/AkaAdN6ANoCEdArICwjY7JXHV9lChoBkdAlZqyGFi8WmgHTegDaAhHQKyDAs4DLbJ1fZQoaAZHQIbxVt8/lhhoB03oA2gIR0CsgynQhOgydX2UKGgGR0CZcNIToMa1aAdN6ANoCEdArInX1FpfyHV9lChoBkdAmfGuEdvKl2gHTegDaAhHQKyMXsl9jPR1fZQoaAZHQJytH+wTufFoB03oA2gIR0CsjvFBppN9dX2UKGgGR0CZUkLy+YdAaAdN6ANoCEdArI8p//echHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}