# πŸ“‘ **LWM: Large Wireless Model** **[πŸš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)** Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to set up your environment, install the required packages, clone the repository, load the data, and perform inference with LWM. --- ## πŸ›  **How to Use for Beginners** ### 1. **Install Conda or Mamba (via Miniforge)** First, you need to have a package manager like **Conda** or **Mamba** (a faster alternative) installed to manage your Python environments and packages. #### **Option A: Install Conda** If you prefer to use **Conda**, you can download and install **Anaconda** or **Miniconda**. - **Anaconda** includes a full scientific package suite, but it is larger in size. Download it [here](https://www.anaconda.com/products/distribution). - **Miniconda** is a lightweight version that only includes Conda and Python. Download it [here](https://docs.conda.io/en/latest/miniconda.html). #### **Option B: Install Mamba (via Miniforge)** **Mamba** is a much faster alternative to Conda. You can install **Mamba** by installing **Miniforge**. - **Miniforge** is a smaller, community-based installer for Conda that includes **Mamba**. Download it [here](https://github.com/conda-forge/miniforge/releases/latest). After installation, you can use `conda` or `mamba` for environment management. The commands will be the same except for replacing `conda` with `mamba`. --- ### 2. **Create a New Environment** Once you have Conda or Mamba installed, follow these steps to create a new environment and install the necessary packages. #### **Step 1: Create a new environment** You can create a new environment called `lwm_env` (or any other name) with Python 3.9 or any required version: ```bash # If you're using Conda: conda create -n lwm_env python=3.9 # If you're using Mamba: mamba create -n lwm_env python=3.9 ``` #### **Step 2: Activate the environment** Activate the environment you just created: ```bash # For both Conda and Mamba: conda activate lwm_env ``` --- ### 3. **Clone the Repository** After setting up the environment, clone the Hugging Face repository to your local machine using the following Python code: ```python import subprocess import os import sys import importlib.util import torch # Hugging Face public repository URL repo_url = "https://huggingface.co/sadjadalikhani/LWM" # Directory where the repo will be cloned clone_dir = "./LWM" # Step 1: Clone the repository if it hasn't been cloned already if not os.path.exists(clone_dir): print(f"Cloning repository from {repo_url} into {clone_dir}...") result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True) if result.returncode != 0: print(f"Error cloning repository: {result.stderr}") sys.exit(1) print(f"Repository cloned successfully into {clone_dir}") else: print(f"Repository already cloned into {clone_dir}") # Step 2: Add the cloned directory to Python path sys.path.append(clone_dir) # Step 3: Import necessary functions def import_functions_from_file(module_name, file_path): try: spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) for function_name in dir(module): if callable(getattr(module, function_name)) and not function_name.startswith("__"): globals()[function_name] = getattr(module, function_name) return module except FileNotFoundError: print(f"Error: {file_path} not found!") sys.exit(1) # Step 4: Import functions from the repository import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py")) import_functions_from_file("inference", os.path.join(clone_dir, "inference.py")) import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py")) import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py")) print("All required functions imported successfully.") ``` --- ### 4. **Install Required Packages** Install the necessary packages inside your new environment. ```bash # If you're using Conda: conda install pytorch torchvision torchaudio -c pytorch pip install -r requirements.txt # If you're using Mamba: mamba install pytorch torchvision torchaudio -c pytorch pip install -r requirements.txt ``` This will install **PyTorch**, **Torchvision**, and other required dependencies from the `requirements.txt` file in the cloned repository. --- ### 5. **Load the DeepMIMO Dataset** Before proceeding with tokenization and data processing, the **DeepMIMO** datasetβ€”or any dataset generated using the operational settings outlined belowβ€”must first be loaded. The table below provides a list of available datasets and their respective links for further details: πŸ“Š **Dataset Overview** | πŸ“Š **Dataset** | πŸ™οΈ **City** | πŸ‘₯ **Number of Users** | πŸ”— **DeepMIMO Page** | |----------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------| | Dataset 0 | πŸŒ† Denver | 1354 | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) | | Dataset 1 | πŸ™οΈ Indianapolis | 3248 | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) | | Dataset 2 | πŸŒ‡ Oklahoma | 3455 | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) | | Dataset 3 | πŸŒ† Fort Worth | 1902 | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/) | | Dataset 4 | πŸŒ‰ Santa Clara | 2689 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) | | Dataset 5 | πŸŒ… San Diego | 2192 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) | It is important to note that these six datasets were **not** used during the pre-training of the LWM model, and the high-quality embeddings produced are a testament to LWM’s robust generalization capabilities rather than overfitting. The operational settings below were used in generating the datasets for both the pre-training of LWM and the downstream tasks. If you intend to use custom datasets, please ensure they adhere to these configurations: #### **Operational Settings**: - **Antennas at BS**: 32 - **Antennas at UEs**: 1 - **Subcarriers**: 32 - **Paths**: 20 #### **Load Data Code**: Select and load specific datasets by adjusting the `dataset_idxs`. In the example below, we select the first two datasets. ```python # Step 5: Load the DeepMIMO dataset print("Loading the DeepMIMO dataset...") # Load the DeepMIMO dataset deepmimo_data = load_DeepMIMO_data() # Select datasets to load dataset_idxs = torch.arange(2) # Adjust the number of datasets as needed print("DeepMIMO dataset loaded successfully.") ``` --- ### 6. **Tokenize the DeepMIMO Dataset** After loading the data, tokenize the selected **DeepMIMO** datasets. This step prepares the data for the model to process. #### **Tokenization Code**: ```python # Step 6: Tokenize the dataset print("Tokenizing the DeepMIMO dataset...") # Tokenize the loaded datasets preprocessed_chs = tokenizer(deepmimo_data, dataset_idxs, gen_raw=True) print("Dataset tokenized successfully.") ``` --- ### 7. **Load the LWM Model** Once the dataset is tokenized, load the pre-trained **LWM** model using the following code: ```python # Step 7: Load the LWM model (with flexibility for the device) device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Loading the LWM model on {device}...") model = LWM.from_pretrained(device=device) ``` --- ### 8. **LWM Inference** Once the dataset is tokenized and the model is loaded, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type. ```python # Step 8: Generate the dataset for inference input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed dataset = dataset_gen(preprocessed_chs, input_type, model) ``` You can choose between: - `cls_emb`: LWM CLS token embeddings - `channel_emb`: LWM channel embeddings - `raw`: Raw wireless channel data --- ### 9. **Post-processing for Downstream Task** #### **Use the Dataset in Downstream Tasks** Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis. ```python # Step 9: Print results print(f"Dataset generated with shape: {dataset.shape}") print("Inference completed successfully.") ``` --- ## πŸ“‹ **Requirements** - **Python 3.x** - **PyTorch** - **Git** --- ### Summary of Steps: 1. **Install Conda/Mamba**: Install a package manager for environment management. 2. **Create Environment**: Use Conda or Mamba to create a new environment. 3. **Clone the Repository**: Download the project files from Hugging Face. 4. **Install Packages**: Install PyTorch and other dependencies. 5. **Load and Tokenize Data**: Load the DeepMIMO dataset and prepare it for the model. 6. **Load Model and Perform Inference**: Use the LWM model for generating embeddings or raw channels.