""" LWM (Large Wireless Model) Implementation and Loading @author: salikha4 This module defines a Large Wireless Model (LWM) using PyTorch, including custom layers for embedding, self-attention, and feed-forward networks. It also provides functionality to load a pre-trained model from a checkpoint. Dependencies: - torch - numpy """ import torch import torch.nn as nn import torch.nn.functional as F import numpy as np ELEMENT_LENGTH = 16 D_MODEL = 64 MAX_LEN = 129 N_LAYERS = 12 N_HEADS = 12 D_FF = D_MODEL * 4 D_K = D_MODEL // N_HEADS D_V = D_MODEL // N_HEADS DROPOUT = 0.1 class LayerNormalization(nn.Module): def __init__(self, d_model: int, eps: float = 1e-6) -> None: super().__init__() self.eps = eps self.alpha = nn.Parameter(torch.ones(d_model)) self.bias = nn.Parameter(torch.zeros(d_model)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) std = x.std(dim=-1, keepdim=True) return self.alpha * (x - mean) / (std + self.eps) + self.bias class Embedding(nn.Module): def __init__(self, element_length, d_model, max_len): super().__init__() self.element_length = element_length self.d_model = d_model self.proj = nn.Linear(element_length, d_model) self.pos_embed = nn.Embedding(max_len, d_model) self.norm = LayerNormalization(d_model) def forward(self, x): seq_len = x.size(1) pos = torch.arange(seq_len, dtype=torch.long, device=x.device) pos = pos.unsqueeze(0).expand_as(x[:, :, 0]) tok_emb = self.proj(x.float()) embedding = tok_emb + self.pos_embed(pos) return self.norm(embedding) class ScaledDotProductAttention(nn.Module): def __init__(self): super().__init__() def forward(self, Q, K, V): scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K) attn = F.softmax(scores, dim=-1) context = torch.matmul(attn, V) return context, attn class MultiHeadAttention(nn.Module): def __init__(self): super().__init__() self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS) self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS) self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS) self.linear = nn.Linear(N_HEADS * D_V, D_MODEL) self.norm = LayerNormalization(D_MODEL) self.dropout = nn.Dropout(DROPOUT) def forward(self, Q, K, V): residual, batch_size = Q, Q.size(0) q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2) k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2) v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2) context, attn = ScaledDotProductAttention()(q_s, k_s, v_s) output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V) output = self.linear(output) return residual + self.dropout(output), attn #residual + self.dropout(output), attn class PoswiseFeedForwardNet(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(D_MODEL, D_FF) self.fc2 = nn.Linear(D_FF, D_MODEL) self.dropout = nn.Dropout(DROPOUT) self.norm = LayerNormalization(D_MODEL) def forward(self, x): output = self.fc2(self.dropout(F.relu(self.fc1(x)))) return x + self.dropout(output) #x + self.dropout(output) class EncoderLayer(nn.Module): def __init__(self): super().__init__() self.enc_self_attn = MultiHeadAttention() self.pos_ffn = PoswiseFeedForwardNet() self.norm = LayerNormalization(D_MODEL) def forward(self, enc_inputs): attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs) attn_outputs = self.norm(attn_outputs) enc_outputs = self.pos_ffn(attn_outputs) return enc_outputs, attn class LWM(nn.Module): def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12): super().__init__() self.embedding = Embedding(element_length, d_model, max_len) self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) self.linear = nn.Linear(d_model, d_model) self.norm = LayerNormalization(d_model) embed_weight = self.embedding.proj.weight d_model, n_dim = embed_weight.size() self.decoder = nn.Linear(d_model, n_dim, bias=False) self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1)) self.decoder_bias = nn.Parameter(torch.zeros(n_dim)) def forward(self, input_ids, masked_pos): output = self.embedding(input_ids) for layer in self.layers: output, _ = layer(output) masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1)) h_masked = torch.gather(output, 1, masked_pos) h_masked = self.norm(F.relu(self.linear(h_masked))) logits_lm = self.decoder(h_masked) + self.decoder_bias return logits_lm, output def load_model(model, model_path, device=None): """ Load a pre-trained LWM model from a checkpoint. Args: model_path (str): Path to the checkpoint file. device (torch.device, optional): Device to load the model onto. Returns: LWM: Loaded model instance. """ if device is None: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #model = LWM(ELEMENT_LENGTH, D_MODEL, MAX_LEN, N_LAYERS) state_dict = torch.load(model_path, map_location=device) model.load_state_dict(state_dict) model.to(device) return model # Usage example if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name = 'model_weights.pth' model_path = f'models/{model_name}' model = LWM() model = load_model(model, model_path, device) print(f"Model loaded successfully on {device}") print(f"Model parameters: {sum(p.numel() for p in model.parameters())}")