# πŸ“‘ **LWM: Large Wireless Model** **[πŸš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/lwm-interactive-demo)** Welcome to **LWM** (Large Wireless Model) β€” a pre-trained model designed for processing and feature extraction from wireless communication datasets, particularly the **DeepMIMO** dataset. This guide provides step-by-step instructions to set up your environment, install the required packages, clone the repository, load data, and perform inference using LWM. --- ## πŸ›  **How to Use** ### 1. **Install Conda** First, ensure that you have a package manager like **Conda** installed to manage your Python environments and packages. #### **Install Conda** You can install **Conda** via **Anaconda** or **Miniconda**. - **Anaconda** includes a comprehensive scientific package suite. Download it [here](https://www.anaconda.com/products/distribution). - **Miniconda** is a lightweight version that includes only Conda and Python. Download it [here](https://docs.conda.io/en/latest/miniconda.html). Once installed, you can use Conda to manage environments. --- ### 2. **Create a New Environment** After installing Conda (https://conda.io/projects/conda/en/latest/user-guide/install/index.html), follow these steps to create a new environment and install the required packages. #### **Step 1: Create a new environment** Create a new environment named `lwm_env`: ```bash conda create -n lwm_env ``` #### **Step 2: Activate the environment** Activate the environment: ```bash conda activate lwm_env ``` --- ### 3. **Install Required Packages** Once the environment is activated, install the necessary packages. #### **Install CUDA-enabled PyTorch** While inference runs efficiently on CPU, you may require a GPU for training downstream tasks. Follow the instructions below to install CUDA-enabled PyTorch. Be sure to adjust the `pytorch-cuda` version according to your system's specifications. ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ``` > **Note:** If you encounter issues installing CUDA-enabled PyTorch, verify your CUDA version compatibility. It might also be due to conflicting installation attemptsβ€”try a fresh environment. #### **Install Other Required Packages via Conda Forge** ```bash conda install python numpy pandas matplotlib tqdm -c conda-forge ``` #### **Install DeepMIMOv3 with pip** ```bash pip install DeepMIMOv3 ``` --- ### 4. **Clone the Dataset Scenarios** The following functions will help you clone specific dataset scenarios from a repository: ```python import subprocess import os # Function to clone a specific dataset scenario folder def clone_dataset_scenario(scenario_name, repo_url, model_repo_dir="./LWM", scenarios_dir="scenarios"): # Create the scenarios directory if it doesn't exist scenarios_path = os.path.join(model_repo_dir, scenarios_dir) if not os.path.exists(scenarios_path): os.makedirs(scenarios_path) scenario_path = os.path.join(scenarios_path, scenario_name) # Initialize sparse checkout for the dataset repository if not os.path.exists(os.path.join(scenarios_path, ".git")): print(f"Initializing sparse checkout in {scenarios_path}...") subprocess.run(["git", "clone", "--sparse", repo_url, "."], cwd=scenarios_path, check=True) subprocess.run(["git", "sparse-checkout", "init", "--cone"], cwd=scenarios_path, check=True) subprocess.run(["git", "lfs", "install"], cwd=scenarios_path, check=True) # Install Git LFS if needed # Add the requested scenario folder to sparse checkout print(f"Adding {scenario_name} to sparse checkout...") subprocess.run(["git", "sparse-checkout", "add", scenario_name], cwd=scenarios_path, check=True) # Pull large files if needed (using Git LFS) subprocess.run(["git", "lfs", "pull"], cwd=scenarios_path, check=True) print(f"Successfully cloned {scenario_name} into {scenarios_path}.") ``` --- ### 5. **Clone the Model Repository** Now, clone the **LWM** model repository to your local system. ```bash # Step 1: Clone the model repository (if not already cloned) model_repo_url = "https://huggingface.co/sadjadalikhani/lwm" model_repo_dir = "./LWM" if not os.path.exists(model_repo_dir): print(f"Cloning model repository from {model_repo_url}...") subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True) ``` --- ### 6. **Clone the Desired Dataset Scenarios** You can now clone specific scenarios from the DeepMIMO dataset, as detailed in the table below: πŸ“Š **Dataset Overview** | πŸ“Š **Dataset** | πŸ™οΈ **City** | πŸ‘₯ **Number of Users** | πŸ”— **DeepMIMO Page** | |----------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------| | Dataset 0 | πŸŒ† Denver | 1354 | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) | | Dataset 1 | πŸ™οΈ Indianapolis | 3248 | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) | | Dataset 2 | πŸŒ‡ Oklahoma | 3455 | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) | | Dataset 3 | πŸŒ† Fort Worth | 1902 | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/) | | Dataset 4 | πŸŒ‰ Santa Clara | 2689 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) | | Dataset 5 | πŸŒ… San Diego | 2192 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) | #### **Clone the Scenarios:** ```python dataset_repo_url = "https://huggingface.co/datasets/sadjadalikhani/lwm" # Base URL for dataset repo scenario_names = np.array([ "city_18_denver", "city_15_indianapolis", "city_19_oklahoma", "city_12_fortworth", "city_11_santaclara", "city_7_sandiego" ]) scenario_idxs = np.array([0, 1, 2, 3, 4, 5]) # Select the scenario indexes selected_scenario_names = scenario_names[scenario_idxs] # Clone the requested scenarios clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir) ``` --- ### 7. **Change the Working Directory to LWM** ```bash if os.path.exists(model_repo_dir): os.chdir(model_repo_dir) print(f"Changed working directory to {os.getcwd()}") else: print(f"Directory {model_repo_dir} does not exist. Please check if the repository is cloned properly.") ``` --- ### 8. **Tokenize and Load the Model** Now, tokenize the dataset and load the pre-trained LWM model. ```python from input_preprocess import tokenizer from lwm_model import lwm import torch preprocessed_chs = tokenizer( selected_scenario_names=selected_scenario_names, manual_data=None, gen_raw=True ) device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Loading the LWM model on {device}...") model = lwm.from_pretrained(device=device) ``` --- ### 9. **Perform Inference** You can now perform inference on the preprocessed data using the LWM model. ```python from inference import lwm_inference, create_raw_dataset input_types = ['cls_emb', 'channel_emb', 'raw'] selected_input_type = input_types[0] if selected_input_type in ['cls_emb', 'channel_emb']: dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device) else: dataset = create_raw_dataset(preprocessed_chs, device) ``` --- ### 10. **Explore the Interactive Demo** To experience **LWM** interactively, visit our demo hosted on Hugging Face Spaces: [**Try the Interactive Demo!**](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo) --- You're now ready to explore the power of **LWM** in wireless communications! Start processing datasets and generate high-quality embeddings to advance your research or applications.