Absolutely! Below is the revised **LWM: Large Wireless Model** setup guide, with added instructions on installation and making it visually appealing, while retaining all original information. --- # ๐Ÿ“ก **LWM: Large Wireless Model** **[๐Ÿš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)** Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to set up your environment, install the required packages, clone the repository, load the data, and perform inference with LWM. --- ## ๐Ÿ›  **How to Use** ### 1. **Install Conda or Mamba (via Miniforge)** First, you need to have a package manager like **Conda** or **Mamba** (a faster alternative) installed to manage your Python environments and packages. #### **Option A: Install Conda** If you prefer to use **Conda**, you can download and install **Anaconda** or **Miniconda**. - **Anaconda** includes a full scientific package suite, but it is larger in size. Download it [here](https://www.anaconda.com/products/distribution). - **Miniconda** is a lightweight version that only includes Conda and Python. Download it [here](https://docs.conda.io/en/latest/miniconda.html). #### **Option B: Install Mamba (via Miniforge)** **Mamba** is a much faster alternative to Conda. You can install **Mamba** by installing **Miniforge**. - **Miniforge** is a smaller, community-based installer for Conda that includes **Mamba**. Download it [here](https://github.com/conda-forge/miniforge/releases/latest). After installation, you can use `conda` or `mamba` for environment management. The commands will be the same except for replacing `conda` with `mamba`. --- ### 2. **Create a New Environment** Once you have Conda or Mamba installed, follow these steps to create a new environment and install the necessary packages. #### **Step 1: Create a new environment** You can create a new environment called `lwm_env` (or any other name) with Python 3.12 or any required version: ```bash # If you're using Conda: conda create -n lwm_env python=3.12 # If you're using Mamba: mamba create -n lwm_env python=3.12 ``` #### **Step 2: Activate the environment** Activate the environment you just created: ```bash # For both Conda and Mamba: conda activate lwm_env ``` --- #### **Step 3: Install Required Packages** Install the necessary packages inside your new environment. ```bash # If you're using Conda: conda install pytorch torchvision torchaudio -c pytorch pip install -r requirements.txt # If you're using Mamba: mamba install pytorch torchvision torchaudio -c pytorch pip install -r requirements.txt ``` > **Note:** The package requirements for the project are as follows: ```python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import pandas as pd import DeepMIMOv3 import os import pickle import shutil import warnings from tqdm import tqdm from datetime import datetime from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt import time ``` --- ### 3. **Required Functions to Clone Datasets** The following functions will help you clone specific dataset scenarios: ```python import subprocess import os # Function to clone a specific dataset scenario folder def clone_dataset_scenario(scenario_name, repo_url, model_repo_dir="./LWM", scenarios_dir="scenarios"): # Create the scenarios directory if it doesn't exist scenarios_path = os.path.join(model_repo_dir, scenarios_dir) if not os.path.exists(scenarios_path): os.makedirs(scenarios_path) scenario_path = os.path.join(scenarios_path, scenario_name) # Initialize sparse checkout for the dataset repository if not os.path.exists(os.path.join(scenarios_path, ".git")): print(f"Initializing sparse checkout in {scenarios_path}...") subprocess.run(["git", "clone", "--sparse", repo_url, "."], cwd=scenarios_path, check=True) subprocess.run(["git", "sparse-checkout", "init", "--cone"], cwd=scenarios_path, check=True) subprocess.run(["git", "lfs", "install"], cwd=scenarios_path, check=True) # Install Git LFS if needed # Add the requested scenario folder to sparse checkout print(f"Adding {scenario_name} to sparse checkout...") subprocess.run(["git", "sparse-checkout", "add", scenario_name], cwd=scenarios_path, check=True) # Pull large files if needed (using Git LFS) subprocess.run(["git", "lfs", "pull"], cwd=scenarios_path, check=True) print(f"Successfully cloned {scenario_name} into {scenarios_path}.") # Function to clone multiple dataset scenarios def clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir): for scenario_name in selected_scenario_names: clone_dataset_scenario(scenario_name, dataset_repo_url, model_repo_dir) ``` --- ### 4. **Clone the Model** Next, you need to clone the **LWM** model from its Git repository. This will download all the necessary files to your local system. ```bash # Step 1: Clone the model repository (if not already cloned) model_repo_url = "https://huggingface.co/sadjadalikhani/lwm" model_repo_dir = "./LWM" if not os.path.exists(model_repo_dir): print(f"Cloning model repository from {model_repo_url}...") subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True) ``` --- ### 5. **Clone the Desired Datasets** Before proceeding with tokenization and data processing, the **DeepMIMO** datasetโ€”or any dataset generated using the operational settings outlined belowโ€”must first be loaded. The table below provides a list of available datasets and their respective links for further details: ๐Ÿ“Š **Dataset Overview** | ๐Ÿ“Š **Dataset** | ๐Ÿ™๏ธ **City** | ๐Ÿ‘ฅ **Number of Users** | ๐Ÿ”— **DeepMIMO Page** | |----------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------| | Dataset 0 | ๐ŸŒ† Denver | 1354 | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) | | Dataset 1 | ๐Ÿ™๏ธ Indianapolis | 3248 | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) | | Dataset 2 | ๐ŸŒ‡ Oklahoma | 3455 | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) | | Dataset 3 | ๐ŸŒ† Fort Worth | 1902 | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/) | | Dataset 4 | ๐ŸŒ‰ Santa Clara | 2689 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) | | Dataset 5 | ๐ŸŒ… San Diego | 2192 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) | It is important to note that these six datasets were **not** used during the pre-training of the LWM model, and the high-quality embeddings produced are a testament to LWMโ€™s robust generalization capabilities rather than overfitting. #### **Operational Settings**: - **Antennas at BS**: 32 - **Antennas at UEs**: 1 - **Subcarriers**: 32 - **Paths**: 20 ```python # Step 2: Clone specific dataset scenario folder(s) inside the "scenarios" folder dataset_repo_url = "https://huggingface.co/datasets/sadjadalikhani/lwm" # Base URL for dataset repo scenario_names = np.array(["city_18_denver", "city_15_indianapolis", "city_19_oklahoma", "city_12_fortworth", "city_11_santaclara", "city_7_sandiego"] ) scenario_idxs = np.array([3]) selected_scenario_names = scenario_names[scenario_idxs] # Clone the requested scenario folders (this will clone every time) clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir) ``` --- ### 6. **Change the working directory to LWM folder** ```bash if os.path.exists(model_repo_dir): os.chdir(model_repo_dir) print(f"Changed working directory to {os.getcwd()}") else: print(f"Directory {model_repo_dir} does not exist. Please check if the repository is cloned properly.") ``` --- ### 7. **Tokenize and Load the Model** ``` python from input_preprocess import tokenizer from lwm_model import lwm import torch preprocessed_chs = tokenizer(selected_scenario_names=selected_scenario_names, manual_data=None, gen_raw=True) device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Loading the LWM model on {device}...") model = lwm.from_pretrained(device=device) ``` --- ### 8. **Perform Inference** ```python from inference import lwm_inference, create_raw_dataset input_types = ['cls_emb', 'channel_emb', 'raw'] selected_input_type = input_types[0] if selected_input_type in ['cls_emb', 'channel_emb']: dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device) else: dataset = create_raw_dataset(preprocessed_chs, device) ``` --- ### 9. **Explore the Interactive Demo** If you'd like to explore **LWM** interactively, check out the demo hosted on Hugging Face Spaces: [**Try the Interactive Demo!**](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo) --- Now youโ€™re ready to dive into the world of **Large Wireless Model (LWM)**, process wireless communication datasets, and extract high-quality embeddings to fuel your research or application!