File size: 7,321 Bytes
33cf891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30399d7
33cf891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 15 19:55:23 2024

@author: salikha4
"""

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from inference import *
from load_data import load_DeepMIMO_data
from input_preprocess import *
#from lwm_model import LWM, load_model


ELEMENT_LENGTH = 16
D_MODEL = 64
MAX_LEN = 129
N_LAYERS = 12
N_HEADS = 12
D_FF = D_MODEL * 4
D_K = D_MODEL // N_HEADS
D_V = D_MODEL // N_HEADS
DROPOUT = 0.1

class LayerNormalization(nn.Module):
    def __init__(self, d_model: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.eps = eps
        self.alpha = nn.Parameter(torch.ones(d_model))
        self.bias = nn.Parameter(torch.zeros(d_model))

    def forward(self, x):
        mean = x.mean(dim=-1, keepdim=True)
        std = x.std(dim=-1, keepdim=True)
        return self.alpha * (x - mean) / (std + self.eps) + self.bias

class Embedding(nn.Module):
    def __init__(self, element_length, d_model, max_len):
        super().__init__()
        self.element_length = element_length
        self.d_model = d_model
        self.proj = nn.Linear(element_length, d_model)
        self.pos_embed = nn.Embedding(max_len, d_model)
        self.norm = LayerNormalization(d_model)

    def forward(self, x):
        seq_len = x.size(1)
        pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
        pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
        tok_emb = self.proj(x.float())
        embedding = tok_emb + self.pos_embed(pos)
        return self.norm(embedding)

class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, Q, K, V):
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
        attn = F.softmax(scores, dim=-1)
        context = torch.matmul(attn, V)
        return context, attn

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super().__init__()
        self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
        self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
        self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
        self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
        self.norm = LayerNormalization(D_MODEL)
        self.dropout = nn.Dropout(DROPOUT)
        
    def forward(self, Q, K, V):
        residual, batch_size = Q, Q.size(0)
        q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
        k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
        v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)

        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
        output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
        output = self.linear(output)
        return residual + self.dropout(output), attn #residual + self.dropout(output), attn

class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(D_MODEL, D_FF)
        self.fc2 = nn.Linear(D_FF, D_MODEL)
        self.dropout = nn.Dropout(DROPOUT)
        self.norm = LayerNormalization(D_MODEL)

    def forward(self, x):
        output = self.fc2(self.dropout(F.relu(self.fc1(x))))
        return x + self.dropout(output) #x + self.dropout(output)

class EncoderLayer(nn.Module):
    def __init__(self):
        super().__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()
        self.norm = LayerNormalization(D_MODEL)

    def forward(self, enc_inputs):
        attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
        attn_outputs = self.norm(attn_outputs)
        enc_outputs = self.pos_ffn(attn_outputs)
        return enc_outputs, attn
    
# class LWM(torch.nn.Module):
#     def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
#         super().__init__()

#         self.embedding = Embedding(element_length, d_model, max_len)
#         self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
#         self.linear = nn.Linear(d_model, d_model)
#         self.norm = LayerNormalization(d_model)

#         embed_weight = self.embedding.proj.weight
#         d_model, n_dim = embed_weight.size()
#         self.decoder = nn.Linear(d_model, n_dim, bias=False)
#         self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
#         self.decoder_bias = nn.Parameter(torch.zeros(n_dim))

#     @classmethod
#     def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda'):
#         # Define model
#         model = cls().to(device)
        
#         # Download the model weights (from a remote or local repository)
#         ckpt_path = f'https://huggingface.co/sadjadalikhani/LWM/resolve/main/{ckpt_name}'
        
#         # Load the model weights
#         model.load_state_dict(torch.hub.load_state_dict_from_url(ckpt_path, map_location=device))
#         print(f"Model loaded successfully from {ckpt_path} to {device}")
        
#         return model

#     def forward(self, input_ids, masked_pos):
#         output = self.embedding(input_ids)
        
#         for layer in self.layers:
#             output, _ = layer(output)

#         masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
#         h_masked = torch.gather(output, 1, masked_pos)
#         h_masked = self.norm(F.relu(self.linear(h_masked)))
#         logits_lm = self.decoder(h_masked) + self.decoder_bias

#         return logits_lm, output

from huggingface_hub import hf_hub_download
import torch

class LWM(torch.nn.Module):
    def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
        super().__init__()
        self.embedding = Embedding(element_length, d_model, max_len)
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
        self.linear = nn.Linear(d_model, d_model)
        self.norm = LayerNormalization(d_model)

        embed_weight = self.embedding.proj.weight
        d_model, n_dim = embed_weight.size()
        self.decoder = nn.Linear(d_model, n_dim, bias=False)
        self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
        self.decoder_bias = nn.Parameter(torch.zeros(n_dim))

    @classmethod
    def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda', use_auth_token=None):
        # Define model
        model = cls().to(device)

        # Download model weights using Hugging Face Hub
        ckpt_path = hf_hub_download(repo_id="sadjadalikhani/LWM", filename=ckpt_name, use_auth_token=use_auth_token)

        # Load the model weights
        model.load_state_dict(torch.load(ckpt_path, map_location=device))
        print(f"Model loaded successfully from {ckpt_path} to {device}")

        return model

    def forward(self, input_ids, masked_pos):
        # Forward pass
        output = self.embedding(input_ids)
        for layer in self.layers:
            output, _ = layer(output)

        masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
        h_masked = torch.gather(output, 1, masked_pos)
        h_masked = self.norm(F.relu(self.linear(h_masked)))
        logits_lm = self.decoder(h_masked) + self.decoder_bias

        return logits_lm, output