--- language: - it license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-base model-index: - name: Whisper Small Italian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: it, split: test' metrics: - type: wer value: 17.391605006569392 name: Wer --- # Whisper Small Italian This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1185 - Wer: 17.3916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - gradient_accumulation_steps: 1 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 954 ### Training results | Training Loss | Step | Validation Loss | Wer | |:-------------:|:----:|:---------------:|:-------:| | 1.4744 | 100 | 1.1852 | 117.6059 | | 0.7241 | 200 | 0.7452 | 79.7386 | | 0.3321 | 300 | 0.3215 | 21.0497 | | 0.2930 | 400 | 0.3030 | 20.2129 | | 0.2698 | 500 | 0.2982 | 19.7635 | | 0.2453 | 600 | 0.2898 | 19.0097 | | 0.2338 | 700 | 0.2768 | 18.7054 | | 0.2402 | 800 | 0.2646 | 18.2214 | | 0.2340 | 900 | 0.2581 | 17.3916 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2