# prediction.py import numpy as np import pandas as pd from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences import joblib import re # Function to clean the input text def clean_text(text): text = text.lower() text = re.sub(r"\d+", " ", text) text = re.sub(r"[^\w\s]", " ", text) text = text.strip() return text # Load the model, tokenizer, and label encoder def load_resources(model_path, tokenizer_path, label_encoder_path): model = load_model(model_path) tokenizer = joblib.load(tokenizer_path) label_encoder = joblib.load(label_encoder_path) return model, tokenizer, label_encoder # Function to make predictions def predict(model, tokenizer, label_encoder, input_text, max_len=50): cleaned_text = clean_text(input_text) sequence = tokenizer.texts_to_sequences([cleaned_text]) padded_sequence = pad_sequences(sequence, maxlen=max_len, padding='post', truncating='post') # Make prediction prediction = model.predict(padded_sequence) predicted_class = np.argmax(prediction, axis=1) # Decode the label predicted_label = label_encoder.inverse_transform(predicted_class) return predicted_label[0] # Main function for running predictions def main(): # Paths to your resources model_path = 'transactify.h5' # Update with the correct path if needed tokenizer_path = 'tokenizer.joblib' # Update with the correct path if needed label_encoder_path = 'label_encoder.joblib' # Update with the correct path if needed # Load resources model, tokenizer, label_encoder = load_resources(model_path, tokenizer_path, label_encoder_path) # Input for prediction input_text = input("Enter a transaction description for prediction: ") predicted_category = predict(model, tokenizer, label_encoder, input_text) print(f"The predicted category is: {predicted_category}") # Execute the main function if __name__ == "__main__": main()