ananthakrishnan
commited on
Commit
•
84b39ac
1
Parent(s):
7b0dad3
tech: model deploy
Browse files- LSTM_model.py +1 -1
- __pycache__/data_preprocessing.cpython-312.pyc +0 -0
- __pycache__/inference.cpython-312.pyc +0 -0
- {Dataset → data_set}/transaction_data.csv +0 -0
- prediction.py → main.py +1 -1
- model.py +25 -0
- setup.md +1 -1
LSTM_model.py
CHANGED
@@ -20,7 +20,7 @@ def build_lstm_model(vocab_size, embedding_dim=64, max_len=10, lstm_units=128, d
|
|
20 |
# Main function to execute the training process
|
21 |
def main():
|
22 |
# Path to your data file
|
23 |
-
data_path = r"E:\transactify\transactify\
|
24 |
|
25 |
# Preprocess the data
|
26 |
sequences, labels, tokenizer, label_encoder = preprocess_data(data_path)
|
|
|
20 |
# Main function to execute the training process
|
21 |
def main():
|
22 |
# Path to your data file
|
23 |
+
data_path = r"E:\transactify\transactify\transactify\transactify\transactify\data_set\transaction_data.csv"
|
24 |
|
25 |
# Preprocess the data
|
26 |
sequences, labels, tokenizer, label_encoder = preprocess_data(data_path)
|
__pycache__/data_preprocessing.cpython-312.pyc
ADDED
Binary file (3.55 kB). View file
|
|
__pycache__/inference.cpython-312.pyc
ADDED
Binary file (2.21 kB). View file
|
|
{Dataset → data_set}/transaction_data.csv
RENAMED
File without changes
|
prediction.py → main.py
RENAMED
@@ -1,4 +1,4 @@
|
|
1 |
-
#
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
from tensorflow.keras.models import load_model
|
|
|
1 |
+
# main.py
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
from tensorflow.keras.models import load_model
|
model.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow.keras.models import load_model
|
2 |
+
import joblib
|
3 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
+
|
7 |
+
# Load the model, tokenizer, and label encoder
|
8 |
+
model = load_model("transactify.h5")
|
9 |
+
tokenizer = joblib.load("tokenizer.joblib")
|
10 |
+
label_encoder = joblib.load("label_encoder.joblib")
|
11 |
+
|
12 |
+
def clean_text(text):
|
13 |
+
text = text.lower()
|
14 |
+
text = re.sub(r"\d+", "", text)
|
15 |
+
text = re.sub(r"[^\w\s]", "", text)
|
16 |
+
return text.strip()
|
17 |
+
|
18 |
+
def predict(text):
|
19 |
+
cleaned_text = clean_text(text)
|
20 |
+
sequence = tokenizer.texts_to_sequences([cleaned_text])
|
21 |
+
padded_sequence = pad_sequences(sequence, maxlen=100)
|
22 |
+
prediction = model.predict(padded_sequence)
|
23 |
+
predicted_label = np.argmax(prediction, axis=1)
|
24 |
+
category = label_encoder.inverse_transform(predicted_label)
|
25 |
+
return {"category": category[0]}
|
setup.md
CHANGED
@@ -47,7 +47,7 @@
|
|
47 |
8. **Run the Prediction Code**:
|
48 |
To make predictions using the trained model, type:
|
49 |
```bash
|
50 |
-
python
|
51 |
```
|
52 |
|
53 |
Following these steps will set up and run the Transactify model for predicting transaction categories based on descriptions.
|
|
|
47 |
8. **Run the Prediction Code**:
|
48 |
To make predictions using the trained model, type:
|
49 |
```bash
|
50 |
+
python main.py
|
51 |
```
|
52 |
|
53 |
Following these steps will set up and run the Transactify model for predicting transaction categories based on descriptions.
|