|
|
|
import numpy as np |
|
from tensorflow.keras.models import Sequential |
|
from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout |
|
from data_preprocessing import preprocess_data, split_data |
|
import joblib |
|
|
|
|
|
def build_lstm_model(vocab_size, embedding_dim=64, max_len=10, lstm_units=128, dropout_rate=0.2, output_units=6): |
|
model = Sequential() |
|
model.add(Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_len)) |
|
model.add(LSTM(units=lstm_units, return_sequences=False)) |
|
model.add(Dropout(dropout_rate)) |
|
model.add(Dense(units=output_units, activation='softmax')) |
|
|
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) |
|
|
|
return model |
|
|
|
|
|
def main(): |
|
|
|
data_path = r"E:\transactify\transactify\Dataset\transaction_data.csv" |
|
|
|
|
|
sequences, labels, tokenizer, label_encoder = preprocess_data(data_path) |
|
|
|
|
|
if sequences is not None: |
|
print("Data preprocessing successful!") |
|
|
|
|
|
X_train, X_test, y_train, y_test = split_data(sequences, labels) |
|
print(f"Training data shape: {X_train.shape}, Training labels shape: {y_train.shape}") |
|
print(f"Testing data shape: {X_test.shape}, Testing labels shape: {y_test.shape}") |
|
|
|
|
|
vocab_size = tokenizer.num_words + 1 |
|
model = build_lstm_model(vocab_size, max_len=10, output_units=len(label_encoder.classes_)) |
|
|
|
|
|
model.fit(X_train, y_train, epochs=50, batch_size=8, validation_data=(X_test, y_test)) |
|
|
|
|
|
loss, accuracy = model.evaluate(X_test, y_test) |
|
print(f"Test Loss: {loss:.4f}, Test Accuracy: {accuracy:.4f}") |
|
|
|
|
|
model.save('transactify.h5') |
|
print("Model saved as 'transactify.h5'") |
|
|
|
|
|
joblib.dump(tokenizer, 'tokenizer.joblib') |
|
joblib.dump(label_encoder, 'label_encoder.joblib') |
|
print("Tokenizer and LabelEncoder saved as 'tokenizer.joblib' and 'label_encoder.joblib'") |
|
|
|
else: |
|
print("Data preprocessing failed.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|