File size: 21,988 Bytes
9fd3cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import math
import struct
import inspect
from .LMConfig import LMConfig
from typing import Any, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    pos_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return pos_cis


def apply_rotary_emb(xq, xk, pos_cis):
    def unite_shape(pos_cis, x):
        ndim = x.ndim
        assert 0 <= 1 < ndim
        assert pos_cis.shape == (x.shape[1], x.shape[-1])
        shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return pos_cis.view(*shape)

    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
    pos_cis = unite_shape(pos_cis, xq_)
    xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
    xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)


def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
    """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
    bs, slen, n_kv_heads, head_dim = x.shape
    if n_rep == 1:
        return x
    return (
        x[:, :, :, None, :]
        .expand(bs, slen, n_kv_heads, n_rep, head_dim)
        .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
    )


class Attention(nn.Module):
    def __init__(self, args: LMConfig):
        super().__init__()
        self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
        assert args.n_heads % self.n_kv_heads == 0
        model_parallel_size = 1
        self.n_local_heads = args.n_heads // model_parallel_size
        self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = args.dim // args.n_heads
        self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
        self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
        self.attn_dropout = nn.Dropout(args.dropout)
        self.resid_dropout = nn.Dropout(args.dropout)
        self.dropout = args.dropout

        # use flash attention or a manual implementation?
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn

        if not self.flash:
            # print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
            mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
            mask = torch.triu(mask, diagonal=1)
            self.register_buffer("mask", mask)

    def forward(
            self,
            x: torch.Tensor,
            pos_cis: torch.Tensor,
            use_kv_cache: bool = False,
            past_kv: Tuple[torch.Tensor] = None
    ):
        bsz, seqlen, _ = x.shape
        # QKV
        # inference
        if use_kv_cache:
            # 只计算最后一个token的Q
            current_token = x[:, -1:, :]

            if not past_kv:
                xq = self.wq(x)
                xk, xv = self.wk(x), self.wv(x)
            else:
                past_key, past_value = past_kv
                xq = torch.cat((torch.zeros_like(x[:, :-1, :]), self.wq(current_token)), dim=1)
                xk = torch.cat((past_key, self.wk(current_token)), dim=1)
                xv = torch.cat((past_value, self.wv(current_token)), dim=1)

            past_kv = (xk, xv)
        else:
            xq = self.wq(x)
            xk, xv = self.wk(x), self.wv(x)

        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

        # RoPE relative positional embeddings
        xq, xk = apply_rotary_emb(xq, xk, pos_cis)

        # grouped multiquery attention: expand out keys and values
        xk = repeat_kv(xk, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)
        xv = repeat_kv(xv, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)

        # make heads into a batch dimension
        xq = xq.transpose(1, 2)  # (bs, n_local_heads, seqlen, head_dim)
        xk = xk.transpose(1, 2)
        xv = xv.transpose(1, 2)

        # flash implementation
        if self.flash:
            output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None,
                                                                      dropout_p=self.dropout if self.training else 0.0,
                                                                      is_causal=True)
        else:
            # manual implementation
            scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
            assert hasattr(self, 'mask')
            scores = scores + self.mask[:, :, :seqlen, :seqlen]  # (bs, n_local_heads, seqlen, cache_len + seqlen)
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            scores = self.attn_dropout(scores)
            output = torch.matmul(scores, xv)  # (bs, n_local_heads, seqlen, head_dim)

        # restore time as batch dimension and concat heads
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)

        # final projection into the residual stream
        output = self.wo(output)
        output = self.resid_dropout(output)
        return output, past_kv


class FeedForward(nn.Module):
    def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
        super().__init__()
        if hidden_dim is None:
            hidden_dim = 4 * dim
            hidden_dim = int(2 * hidden_dim / 3)
            hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))


class MoEGate(nn.Module):
    def __init__(self, config: LMConfig):
        super().__init__()
        self.config = config
        self.top_k = config.num_experts_per_tok
        self.n_routed_experts = config.n_routed_experts

        self.scoring_func = config.scoring_func
        self.alpha = config.aux_loss_alpha
        self.seq_aux = config.seq_aux

        # topk selection algorithm
        self.norm_topk_prob = config.norm_topk_prob
        self.gating_dim = config.dim
        self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
        self.reset_parameters()

    def reset_parameters(self) -> None:
        import torch.nn.init as init
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))

    def forward(self, hidden_states):
        bsz, seq_len, h = hidden_states.shape
        ### compute gating score
        hidden_states = hidden_states.view(-1, h)
        logits = F.linear(hidden_states, self.weight, None)
        if self.scoring_func == 'softmax':
            scores = logits.softmax(dim=-1)
        else:
            raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')

        ### select top-k experts
        topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)

        ### norm gate to sum 1
        if self.top_k > 1 and self.norm_topk_prob:
            denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
            topk_weight = topk_weight / denominator

        ### expert-level computation auxiliary loss
        if self.training and self.alpha > 0.0:
            scores_for_aux = scores
            aux_topk = self.top_k
            # always compute aux loss based on the naive greedy topk method
            topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
            if self.seq_aux:
                scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
                ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
                ce.scatter_add_(1, topk_idx_for_aux_loss,
                                torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
                    seq_len * aux_topk / self.n_routed_experts)
                aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
            else:
                mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
                ce = mask_ce.float().mean(0)
                Pi = scores_for_aux.mean(0)
                fi = ce * self.n_routed_experts
                aux_loss = (Pi * fi).sum() * self.alpha
        else:
            aux_loss = None
        return topk_idx, topk_weight, aux_loss


class MOEFeedForward(nn.Module):
    def __init__(self, config: LMConfig):
        super().__init__()
        self.config = config
        self.experts = nn.ModuleList([
            FeedForward(
                dim=config.dim,
                hidden_dim=config.hidden_dim,
                multiple_of=config.multiple_of,
                dropout=config.dropout,
            )
            for _ in range(config.n_routed_experts)
        ])

        self.gate = MoEGate(config)
        if config.n_shared_experts is not None:
            self.shared_experts = FeedForward(
                dim=config.dim,
                hidden_dim=config.hidden_dim,
                multiple_of=config.multiple_of,
                dropout=config.dropout,
            )

    def forward(self, x):
        identity = x
        orig_shape = x.shape
        bsz, seq_len, _ = x.shape

        # 使用门控机制选择专家
        topk_idx, topk_weight, aux_loss = self.gate(x)

        x = x.view(-1, x.shape[-1])
        flat_topk_idx = topk_idx.view(-1)

        if self.training:
            # 训练模式下,重复输入数据
            x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
            y = torch.empty_like(x, dtype=torch.float16)
            for i, expert in enumerate(self.experts):
                y[flat_topk_idx == i] = expert(x[flat_topk_idx == i])
            y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
            y = y.view(*orig_shape)
        else:
            # 推理模式下,只选择最优专家
            y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)

        if self.config.n_shared_experts is not None:
            y = y + self.shared_experts(identity)

        return y

    @torch.no_grad()
    def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
        expert_cache = torch.zeros_like(x)
        idxs = flat_expert_indices.argsort()
        tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
        token_idxs = idxs // self.config.num_experts_per_tok
        # 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
        # 当token_idxs=[3, 7, 19, 21, 24, 25,  4,  5,  6, 10, 11, 12...]
        # 意味着当token_idxs[:6] -> [3,  7, 19, 21, 24, 25,  4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理......
        for i, end_idx in enumerate(tokens_per_expert):
            start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
            if start_idx == end_idx:
                continue
            expert = self.experts[i]
            exp_token_idx = token_idxs[start_idx:end_idx]
            expert_tokens = x[exp_token_idx]
            expert_out = expert(expert_tokens)
            expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
            # 使用 scatter_add_ 进行 sum 操作
            expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)

        return expert_cache


class TransformerBlock(nn.Module):
    def __init__(self, layer_id: int, args: LMConfig):
        super().__init__()
        self.n_heads = args.n_heads
        self.dim = args.dim
        self.head_dim = args.dim // args.n_heads
        self.attention = Attention(args)

        self.layer_id = layer_id
        self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
        self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)

        if args.use_moe:
            self.feed_forward = MOEFeedForward(args)
        else:
            self.feed_forward = FeedForward(
                dim=args.dim,
                hidden_dim=args.hidden_dim,
                multiple_of=args.multiple_of,
                dropout=args.dropout,
            )

    def forward(self, x, pos_cis, use_kv_cache=False, past_kv: Tuple[torch.Tensor] = None):
        attn_res, past_kv = self.attention(self.attention_norm(x), pos_cis, use_kv_cache, past_kv)
        h = x + attn_res
        out = h + self.feed_forward(self.ffn_norm(h))
        return out, past_kv


class Transformer(PreTrainedModel):
    config_class = LMConfig
    last_loss: Optional[torch.Tensor]

    def __init__(self, params: LMConfig = None):
        super().__init__(params)
        if not params:
            params = LMConfig()
        self.params = params
        self.vocab_size = params.vocab_size
        self.n_layers = params.n_layers

        self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
        self.dropout = nn.Dropout(params.dropout)
        self.layers = torch.nn.ModuleList()
        for layer_id in range(self.n_layers):
            self.layers.append(TransformerBlock(layer_id, params))
        self.norm = RMSNorm(params.dim, eps=params.norm_eps)
        self.output = nn.Linear(params.dim, params.vocab_size, bias=False)

        # share the unembedding parameters with the embedding parameters
        self.tok_embeddings.weight = self.output.weight  # https://paperswithcode.com/method/weight-tying

        # some useful precompute for the RoPE relative positional embeddings
        pos_cis = precompute_pos_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
        self.register_buffer("pos_cis", pos_cis, persistent=False)

        # init all weights
        self.apply(self._init_weights)
        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers))

        # Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
        self.last_loss = None
        self.OUT = CausalLMOutputWithPast()

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, tokens: Optional[torch.Tensor] = None,
                targets: Optional[torch.Tensor] = None,
                use_kv_cache=False, past_kvs=None, **keyargs):
        if past_kvs is None:
            past_kvs = [None for _ in range(self.n_layers)]
        if 'input_ids' in keyargs:
            tokens = keyargs['input_ids']
        if 'attention_mask' in keyargs:
            targets = keyargs['attention_mask']

        _bsz, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)
        h = self.dropout(h)
        pos_cis = self.pos_cis[:seqlen]
        for idx, layer in enumerate(self.layers):
            h, past_kvs[idx] = layer(h, pos_cis, use_kv_cache, past_kvs[idx])

        h = self.norm(h)

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.output(h)
            self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the output on the very last position
            logits = self.output(h[:, [-1], :])  # note: using list [-1] to preserve the time dim
            self.last_loss = None

        self.OUT.__setitem__('logits', logits)
        self.OUT.__setitem__('last_loss', self.last_loss)

        if use_kv_cache:
            return self.OUT, past_kvs
        return self.OUT


    @torch.inference_mode()
    def generate(self, idx, eos, max_new_tokens, temperature=0.7, top_k=None, stream=True, repetition_penalty=1.):
        index = idx.shape[1]
        use_kv_cache = True
        past_kvs = [None for _ in range(self.n_layers)]
        while idx.shape[1] < max_new_tokens - 1:
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx  # if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
            # forward the model to get the logits for the index in the sequence
            inference_res = self(idx_cond, use_kv_cache=use_kv_cache, past_kvs=past_kvs)
            if use_kv_cache:
                logits, past_kvs = inference_res[0].logits, inference_res[1]
            else:
                logits = inference_res.logits

            logits = logits[:, -1, :]  # crop to just the final time step

            # Apply repetition penalty
            for token in set(idx.tolist()[0]):
                logits[:, token] /= repetition_penalty

            if temperature == 0.0:
                # "sample" the single most likely index
                __, idx_next = torch.topk(logits, k=1, dim=-1)
            else:
                # pluck the logits at the final step and scale by desired temperature
                logits = logits / temperature
                # optionally crop the logits to only the top k options
                if top_k is not None:
                    v, __ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float('Inf')

                # apply softmax to convert logits to (normalized) probabilities
                probs = F.softmax(logits, dim=-1)
                idx_next = torch.multinomial(probs, num_samples=1, generator=None)
            # append sampled index to the running sequence and continue
            if idx_next == eos:
                break

            idx = torch.cat((idx, idx_next), dim=1)
            if stream:
                yield idx[:, index:]

        if not stream:
            yield idx[:, index:]

    @torch.inference_mode()
    def eval_answer(self, idx):
        # if the sequence context is growing too long we must crop it at block_size
        idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
        # forward the model to get the logits for the index in the sequence
        past_kvs = [None for _ in range(self.n_layers)]
        inference_res = self(idx_cond, use_kv_cache=False, past_kvs=past_kvs)
        logits = inference_res.logits
        logits = logits[:, -1, :]
        return logits

    def export(self, filepath='model.bin'):
        """export the model weights in fp32 into .bin file to be read from C"""
        f = open(filepath, 'wb')

        def serialize(t):
            d = t.detach().cpu().view(-1).numpy().astype(np.float32)
            b = struct.pack(f'{len(d)}f', *d)
            f.write(b)

        # first write out the header
        hidden_dim = self.layers[0].feed_forward.w1.weight.shape[0]
        p = self.params
        n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads
        header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads,
                             n_kv_heads, p.vocab_size, p.max_seq_len)
        f.write(header)

        # next write out the embedding weights
        serialize(self.tok_embeddings.weight)

        # now all the layers
        # attention weights
        for layer in self.layers:
            serialize(layer.attention_norm.weight)
        for layer in self.layers:
            serialize(layer.attention.wq.weight)
        for layer in self.layers:
            serialize(layer.attention.wk.weight)
        for layer in self.layers:
            serialize(layer.attention.wv.weight)
        for layer in self.layers:
            serialize(layer.attention.wo.weight)
        # ffn weights
        for layer in self.layers:
            serialize(layer.ffn_norm.weight)
        for layer in self.layers:
            serialize(layer.feed_forward.w1.weight)
        for layer in self.layers:
            serialize(layer.feed_forward.w2.weight)
        for layer in self.layers:
            serialize(layer.feed_forward.w3.weight)
        # final rmsnorm
        serialize(self.norm.weight)
        # note: no need to write final classifier weights due to weight sharing
        # pos_cis
        serialize(self.freqs_cos[:p.max_seq_len])
        serialize(self.freqs_sin[:p.max_seq_len])

        # write to binary file
        f.close()
        print(f"wrote {filepath}")