wangrongsheng
commited on
Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,130 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- shareAI/ShareGPT-Chinese-English-90k
|
5 |
+
language:
|
6 |
+
- zh
|
7 |
+
- en
|
8 |
+
pipeline_tag: text-generation
|
9 |
---
|
10 |
+
![](./assets/aurora.png)
|
11 |
+
|
12 |
+
<div align="center">
|
13 |
+
<h2>
|
14 |
+
Aurora: Activating chinese chat capability for Mistral-8x7B sparse Mixture-of-Experts through Instruction-Tuning
|
15 |
+
</h2>
|
16 |
+
</div>
|
17 |
+
|
18 |
+
1. <h1>Please follow our Github: <a href="https://github.com/WangRongsheng/Aurora">https://github.com/WangRongsheng/Aurora</a></h1>
|
19 |
+
2. <h1>Please follow our Paper: <a href="https://arxiv.org/abs/2312.14557">https://arxiv.org/abs/2312.14557</a></h1>
|
20 |
+
|
21 |
+
## Overview
|
22 |
+
|
23 |
+
Existing research has demonstrated that refining large language models (LLMs) through the utilization of machine-generated instruction-following data empowers these models to exhibit impressive zero-shot capabilities for novel tasks, without requiring human-authored instructions. In this paper, we systematically investigate, preprocess, and integrate three Chinese instruction-following datasets with the aim of enhancing the Chinese conversational capabilities of Mixtral-8x7B sparse Mixture-of-Experts model. Through instruction fine-tuning on this carefully processed dataset, we successfully construct the Mixtral-8x7B sparse Mixture-of-Experts model named "Aurora." To assess the performance of Aurora, we utilize three widely recognized benchmark tests: C-Eval, MMLU, and CMMLU. Empirical studies validate the effectiveness of instruction fine-tuning applied to Mixtral-8x7B sparse Mixture-of-Experts model. This work is pioneering in the execution of instruction fine-tuning on a sparse expert-mixed model, marking a significant breakthrough in enhancing the capabilities of this model architecture.
|
24 |
+
|
25 |
+
![](./training_loss.png)
|
26 |
+
|
27 |
+
## Usage
|
28 |
+
|
29 |
+
```python
|
30 |
+
import gradio as gr
|
31 |
+
import torch
|
32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
33 |
+
from threading import Thread
|
34 |
+
from peft import PeftModel
|
35 |
+
import time
|
36 |
+
|
37 |
+
model_name_or_path = "mistralai/Mixtral-8x7B-Instruct-v0.1" # download weights from https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
|
38 |
+
lora_weights = "wangrongsheng/Aurora" # download weights from https://huggingface.co/wangrongsheng/Aurora
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
41 |
+
model0 = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_4bit=True, device_map="auto", torch_dtype=torch.bfloat16)
|
42 |
+
model = PeftModel.from_pretrained(
|
43 |
+
model0,
|
44 |
+
lora_weights,
|
45 |
+
)
|
46 |
+
|
47 |
+
class StopOnTokens(StoppingCriteria):
|
48 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
49 |
+
stop_ids = [0,]
|
50 |
+
for stop_id in stop_ids:
|
51 |
+
if input_ids[0][-1] == stop_id:
|
52 |
+
return True
|
53 |
+
return False
|
54 |
+
|
55 |
+
def convert_history_to_text(history):
|
56 |
+
text = ""
|
57 |
+
if len(history) > 1:
|
58 |
+
text = "<s> " + "".join(
|
59 |
+
[
|
60 |
+
"".join(
|
61 |
+
[
|
62 |
+
f"[INST]{item[0]}[/INST] {item[1]} ",
|
63 |
+
]
|
64 |
+
)
|
65 |
+
for item in history[:-1]
|
66 |
+
]
|
67 |
+
) + "</s> "
|
68 |
+
text += "".join(
|
69 |
+
[
|
70 |
+
"".join(
|
71 |
+
[
|
72 |
+
f"[INST]{history[-1][0]}[/INST]",
|
73 |
+
]
|
74 |
+
)
|
75 |
+
]
|
76 |
+
)
|
77 |
+
return text
|
78 |
+
|
79 |
+
def predict(message, history):
|
80 |
+
|
81 |
+
history_transformer_format = history + [[message, ""]]
|
82 |
+
stop = StopOnTokens()
|
83 |
+
|
84 |
+
messages = convert_history_to_text(history_transformer_format)
|
85 |
+
|
86 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
87 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
88 |
+
generate_kwargs = dict(
|
89 |
+
model_inputs,
|
90 |
+
streamer=streamer,
|
91 |
+
max_new_tokens=4096,
|
92 |
+
do_sample=True,
|
93 |
+
top_p=0.95,
|
94 |
+
top_k=1000,
|
95 |
+
temperature=1.0,
|
96 |
+
num_beams=1,
|
97 |
+
pad_token_id=tokenizer.eos_token_id,
|
98 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
99 |
+
)
|
100 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
101 |
+
t.start()
|
102 |
+
|
103 |
+
partial_message = ""
|
104 |
+
t1 = time.time()
|
105 |
+
count = 0
|
106 |
+
for new_token in streamer:
|
107 |
+
if new_token != '<':
|
108 |
+
partial_message += new_token
|
109 |
+
count += 1
|
110 |
+
yield partial_message
|
111 |
+
t2 = time.time()
|
112 |
+
speed = count/(t2-t1)
|
113 |
+
print("inference speed: %f tok/s" % speed)
|
114 |
+
|
115 |
+
|
116 |
+
gr.ChatInterface(predict,chatbot=gr.Chatbot(height=600,),title="MoE").queue().launch()
|
117 |
+
```
|
118 |
+
|
119 |
+
## Citation
|
120 |
+
If you find our work helpful, feel free to give us a cite.
|
121 |
+
```latex
|
122 |
+
@misc{wang2023auroraactivating,
|
123 |
+
title={Aurora:Activating Chinese chat capability for Mixtral-8x7B sparse Mixture-of-Experts through Instruction-Tuning},
|
124 |
+
author={Rongsheng Wang and Haoming Chen and Ruizhe Zhou and Yaofei Duan and Kunyan Cai and Han Ma and Jiaxi Cui and Jian Li and Patrick Cheong-Iao Pang and Yapeng Wang and Tao Tan},
|
125 |
+
year={2023},
|
126 |
+
eprint={2312.14557},
|
127 |
+
archivePrefix={arXiv},
|
128 |
+
primaryClass={cs.CL}
|
129 |
+
}
|
130 |
+
```
|