--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: TTC4900Model results: [] --- # TTC4900Model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4669 - Accuracy: 0.8633 - F1: 0.7752 - Precision: 0.7764 - Recall: 0.7751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.6784 | 0.04 | 50 | 1.2099 | 0.5995 | 0.2253 | 0.3879 | 0.2247 | | 1.0203 | 0.08 | 100 | 0.7696 | 0.7533 | 0.4285 | 0.5258 | 0.4563 | | 0.7322 | 0.12 | 150 | 0.6271 | 0.8152 | 0.6305 | 0.6720 | 0.6056 | | 0.6119 | 0.16 | 200 | 0.5934 | 0.8270 | 0.6673 | 0.7649 | 0.6662 | | 0.6203 | 0.2 | 250 | 0.5759 | 0.8281 | 0.6618 | 0.7352 | 0.6566 | | 0.5874 | 0.24 | 300 | 0.5446 | 0.8373 | 0.7351 | 0.7633 | 0.7256 | | 0.5507 | 0.28 | 350 | 0.5371 | 0.8394 | 0.7481 | 0.7580 | 0.7435 | | 0.5615 | 0.33 | 400 | 0.5272 | 0.8469 | 0.7377 | 0.7961 | 0.7241 | | 0.5371 | 0.37 | 450 | 0.5193 | 0.8431 | 0.7413 | 0.7828 | 0.7299 | | 0.5267 | 0.41 | 500 | 0.5124 | 0.8490 | 0.7446 | 0.7714 | 0.7321 | | 0.4971 | 0.45 | 550 | 0.5105 | 0.8509 | 0.7503 | 0.8071 | 0.7192 | | 0.5399 | 0.49 | 600 | 0.5149 | 0.8473 | 0.7402 | 0.7849 | 0.7291 | | 0.5229 | 0.53 | 650 | 0.5190 | 0.8447 | 0.7504 | 0.7753 | 0.7421 | | 0.5077 | 0.57 | 700 | 0.5096 | 0.8487 | 0.7528 | 0.7764 | 0.7413 | | 0.5073 | 0.61 | 750 | 0.4946 | 0.8511 | 0.7487 | 0.8055 | 0.7279 | | 0.4823 | 0.65 | 800 | 0.5105 | 0.8506 | 0.7509 | 0.7918 | 0.7292 | | 0.483 | 0.69 | 850 | 0.4887 | 0.8542 | 0.7653 | 0.7936 | 0.7502 | | 0.55 | 0.73 | 900 | 0.4865 | 0.8556 | 0.7599 | 0.8010 | 0.7425 | | 0.5406 | 0.77 | 950 | 0.4875 | 0.8533 | 0.7515 | 0.8018 | 0.7255 | | 0.5078 | 0.81 | 1000 | 0.5075 | 0.8564 | 0.7528 | 0.8134 | 0.7227 | | 0.4965 | 0.85 | 1050 | 0.4789 | 0.8560 | 0.7655 | 0.7995 | 0.7405 | | 0.4676 | 0.89 | 1100 | 0.4806 | 0.8555 | 0.7468 | 0.7989 | 0.7244 | | 0.4786 | 0.93 | 1150 | 0.4822 | 0.8572 | 0.7587 | 0.7762 | 0.7504 | | 0.4928 | 0.98 | 1200 | 0.4743 | 0.8569 | 0.7553 | 0.8009 | 0.7404 | | 0.472 | 1.02 | 1250 | 0.4917 | 0.8581 | 0.7511 | 0.8075 | 0.7278 | | 0.395 | 1.06 | 1300 | 0.4929 | 0.8573 | 0.7657 | 0.7937 | 0.7516 | | 0.3735 | 1.1 | 1350 | 0.4844 | 0.8558 | 0.7687 | 0.7685 | 0.7693 | | 0.3974 | 1.14 | 1400 | 0.5005 | 0.8504 | 0.7631 | 0.7556 | 0.7732 | | 0.4197 | 1.18 | 1450 | 0.5044 | 0.8557 | 0.7475 | 0.8096 | 0.7265 | | 0.4149 | 1.22 | 1500 | 0.4914 | 0.8560 | 0.7556 | 0.8009 | 0.7431 | | 0.4937 | 1.26 | 1550 | 0.4684 | 0.8583 | 0.7697 | 0.7847 | 0.7596 | | 0.344 | 1.3 | 1600 | 0.5126 | 0.8570 | 0.7606 | 0.8084 | 0.7369 | | 0.4399 | 1.34 | 1650 | 0.4856 | 0.8545 | 0.7608 | 0.7947 | 0.7490 | | 0.4176 | 1.38 | 1700 | 0.4851 | 0.8578 | 0.7648 | 0.8018 | 0.7419 | | 0.4301 | 1.42 | 1750 | 0.4725 | 0.8579 | 0.7673 | 0.7811 | 0.7611 | | 0.4161 | 1.46 | 1800 | 0.4794 | 0.8587 | 0.7712 | 0.7954 | 0.7583 | | 0.3632 | 1.5 | 1850 | 0.4835 | 0.8579 | 0.7716 | 0.8036 | 0.7543 | | 0.4328 | 1.54 | 1900 | 0.4748 | 0.8574 | 0.7744 | 0.7958 | 0.7606 | | 0.4026 | 1.59 | 1950 | 0.4733 | 0.8571 | 0.7726 | 0.7925 | 0.7591 | | 0.3792 | 1.63 | 2000 | 0.4826 | 0.8593 | 0.7715 | 0.7912 | 0.7576 | | 0.4087 | 1.67 | 2050 | 0.4732 | 0.8594 | 0.7704 | 0.7954 | 0.7525 | | 0.3953 | 1.71 | 2100 | 0.4721 | 0.8592 | 0.7724 | 0.7869 | 0.7634 | | 0.403 | 1.75 | 2150 | 0.4714 | 0.8629 | 0.7737 | 0.8055 | 0.7552 | | 0.3987 | 1.79 | 2200 | 0.4657 | 0.8617 | 0.7729 | 0.7929 | 0.7583 | | 0.3891 | 1.83 | 2250 | 0.4694 | 0.8609 | 0.7720 | 0.7877 | 0.7664 | | 0.4266 | 1.87 | 2300 | 0.4716 | 0.8603 | 0.7696 | 0.7953 | 0.7625 | | 0.3784 | 1.91 | 2350 | 0.4658 | 0.8609 | 0.7735 | 0.7968 | 0.7606 | | 0.4108 | 1.95 | 2400 | 0.4571 | 0.8611 | 0.7746 | 0.8005 | 0.7585 | | 0.4227 | 1.99 | 2450 | 0.4575 | 0.8634 | 0.7812 | 0.8047 | 0.7643 | | 0.2896 | 2.03 | 2500 | 0.4835 | 0.8637 | 0.7801 | 0.7916 | 0.7730 | | 0.3539 | 2.07 | 2550 | 0.4741 | 0.8626 | 0.7787 | 0.7974 | 0.7664 | | 0.3657 | 2.11 | 2600 | 0.4799 | 0.8579 | 0.7737 | 0.7964 | 0.7592 | | 0.3407 | 2.15 | 2650 | 0.4765 | 0.8604 | 0.7681 | 0.7963 | 0.7524 | | 0.317 | 2.2 | 2700 | 0.4817 | 0.8583 | 0.7729 | 0.7797 | 0.7705 | | 0.3166 | 2.24 | 2750 | 0.4886 | 0.8589 | 0.7653 | 0.7917 | 0.7553 | | 0.3078 | 2.28 | 2800 | 0.4927 | 0.8574 | 0.7709 | 0.7888 | 0.7607 | | 0.3366 | 2.32 | 2850 | 0.4948 | 0.8600 | 0.7735 | 0.7907 | 0.7609 | | 0.2863 | 2.36 | 2900 | 0.4994 | 0.8578 | 0.7699 | 0.7784 | 0.7668 | | 0.255 | 2.4 | 2950 | 0.5017 | 0.8601 | 0.7696 | 0.7862 | 0.7575 | | 0.3379 | 2.44 | 3000 | 0.4824 | 0.8591 | 0.7715 | 0.7787 | 0.7671 | | 0.2751 | 2.48 | 3050 | 0.4944 | 0.8616 | 0.7745 | 0.7965 | 0.7587 | | 0.2902 | 2.52 | 3100 | 0.4865 | 0.8596 | 0.7751 | 0.7863 | 0.7675 | | 0.2917 | 2.56 | 3150 | 0.4875 | 0.8608 | 0.7748 | 0.7864 | 0.7656 | | 0.3014 | 2.6 | 3200 | 0.4872 | 0.8614 | 0.7756 | 0.7886 | 0.7663 | | 0.3269 | 2.64 | 3250 | 0.4905 | 0.8598 | 0.7763 | 0.7884 | 0.7669 | | 0.3245 | 2.68 | 3300 | 0.4898 | 0.8625 | 0.7778 | 0.7971 | 0.7627 | | 0.2951 | 2.72 | 3350 | 0.4864 | 0.8599 | 0.7771 | 0.7885 | 0.7686 | | 0.2888 | 2.76 | 3400 | 0.4906 | 0.8623 | 0.7758 | 0.7969 | 0.7609 | | 0.3037 | 2.8 | 3450 | 0.4863 | 0.8609 | 0.7751 | 0.7939 | 0.7630 | | 0.2855 | 2.85 | 3500 | 0.4881 | 0.8621 | 0.7773 | 0.7935 | 0.7661 | | 0.297 | 2.89 | 3550 | 0.4880 | 0.8620 | 0.7786 | 0.7927 | 0.7687 | | 0.2753 | 2.93 | 3600 | 0.4887 | 0.8615 | 0.7772 | 0.7902 | 0.7679 | | 0.2922 | 2.97 | 3650 | 0.4876 | 0.8610 | 0.7770 | 0.7883 | 0.7691 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2