--- license: cc-by-nc-4.0 datasets: - stockmark/ner-wikipedia-dataset language: - ja metrics: - f1 - precision - recall tags: - NER - information extraction - relation extraction - summarization - sentiment extraction - question-answering pipeline_tag: token-classification library_name: gliner --- # vumichien/ner-jp-gliner This model is a fine-tuned version of [deberta-v3-base-japanese](ku-nlp/deberta-v3-base-japanese) on the Japanese Ner Wikipedia dataset. It achieves the following results: - Precision: 96.07% - Recall: 89.16% - F1 score: 92.49% ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - num_steps: 30000 - train_batch_size: 8 - eval_every: 3000 - warmup_ratio: 0.1 - scheduler_type: "cosine" - loss_alpha: -1 - loss_gamma: 0 - label_smoothing: 0 - loss_reduction: "sum" - lr_encoder: 1e-5 - lr_others: 5e-5 - weight_decay_encoder: 0.01 - weight_decay_other: 0.01 ### Training results | Epoch | Training Loss | |:-----:|:-------------:| | 1 | 1291.582200 | | 2 | 53.290100 | | 3 | 44.137400 | | 4 | 35.286200 | | 5 | 20.865500 | | 6 | 15.890000 | | 7 | 13.369600 | | 8 | 11.599500 | | 9 | 9.773400 | | 10 | 8.372600 | | 11 | 7.256200 | | 12 | 6.521800 | | 13 | 7.203800 | | 14 | 7.032900 | | 15 | 6.189700 | | 16 | 6.897400 | | 17 | 6.031700 | | 18 | 5.329600 | | 19 | 5.411300 | | 20 | 5.253800 | | 21 | 4.522000 | | 22 | 5.107700 | | 23 | 4.163300 | | 24 | 4.185400 | | 25 | 3.403100 | | 26 | 3.272400 | | 27 | 2.387800 | | 28 | 3.039400 | | 29 | 2.383000 | | 30 | 1.895300 | | 31 | 1.748700 | | 32 | 1.864300 | | 33 | 2.343000 | | 34 | 1.356600 | | 35 | 1.182000 | | 36 | 0.894700 | | 37 | 0.954900 |