--- license: mit tags: - generated_from_trainer metrics: - wer base_model: facebook/w2v-bert-2.0 model-index: - name: w2v-bert-2.0-nonstudio_and_studioRecords results: [] --- # w2v-bert-2.0-nonstudio_and_studioRecords This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1771 - Wer: 0.1179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1594 | 0.46 | 600 | 0.3721 | 0.4705 | | 0.1751 | 0.92 | 1200 | 0.2652 | 0.3615 | | 0.1269 | 1.38 | 1800 | 0.2069 | 0.2824 | | 0.1113 | 1.84 | 2400 | 0.1867 | 0.2535 | | 0.0904 | 2.3 | 3000 | 0.1907 | 0.2555 | | 0.0783 | 2.76 | 3600 | 0.1740 | 0.2421 | | 0.0691 | 3.22 | 4200 | 0.1860 | 0.2366 | | 0.0588 | 3.68 | 4800 | 0.1696 | 0.2195 | | 0.0541 | 4.14 | 5400 | 0.1560 | 0.1859 | | 0.0421 | 4.6 | 6000 | 0.1812 | 0.1757 | | 0.0385 | 5.06 | 6600 | 0.1643 | 0.1677 | | 0.0305 | 5.52 | 7200 | 0.1457 | 0.1553 | | 0.0309 | 5.98 | 7800 | 0.1494 | 0.1558 | | 0.0214 | 6.44 | 8400 | 0.1516 | 0.1428 | | 0.0216 | 6.9 | 9000 | 0.1409 | 0.1408 | | 0.0146 | 7.36 | 9600 | 0.1524 | 0.1359 | | 0.0133 | 7.82 | 10200 | 0.1494 | 0.1294 | | 0.0103 | 8.28 | 10800 | 0.1600 | 0.1321 | | 0.0079 | 8.74 | 11400 | 0.1658 | 0.1224 | | 0.0065 | 9.2 | 12000 | 0.1644 | 0.1227 | | 0.0043 | 9.66 | 12600 | 0.1771 | 0.1179 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1