--- datasets: - mozilla-foundation/common_voice_11_0 language: - el metrics: - wer license: apache-2.0 --- # Whisper small finetuned for Greek transcription ## How to use You can use the model for Greek ASR: ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration from datasets import Audio, load_dataset # load model and processor processor = WhisperProcessor.from_pretrained("voxreality/whisper-small-el-finetune") model = WhisperForConditionalGeneration.from_pretrained("voxreality/whisper-small-el-finetune") forced_decoder_ids = processor.get_decoder_prompt_ids(language="greek", task="transcribe") # load streaming dataset and read first audio sample ds = load_dataset("mozilla-foundation/common_voice_11_0", "el", split="test", streaming=True) ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) input_speech = next(iter(ds))["audio"] input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features # generate token ids predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) # decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) ``` You can also use an HF pipeline: ```python from transformers import pipeline from datasets import Audio, load_dataset ds = load_dataset("mozilla-foundation/common_voice_11_0", "el", split="test", streaming=True) ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) input_speech = next(iter(ds))["audio"] pipe = pipeline("automatic-speech-recognition", model='voxreality/whisper-small-el-finetune', device='cpu', batch_size=32) transcription = pipe(input_speech['array'], generate_kwargs = {"language":f"<|el|>","task": "transcribe"}) ```