--- library_name: transformers tags: [] --- # Model Card for Model ID Patched LLama 3.2 8B from LLaMA 3.2 11B Model Here’s the complete, refined code for patching the weights: ```python # Import required libraries from transformers import AutoProcessor, AutoTokenizer, AutoModelForImageTextToText, AutoModelForCausalLM # Load the 11B Vision-Instruct model processor = AutoProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision-Instruct") model = AutoModelForImageTextToText.from_pretrained("meta-llama/Llama-3.2-11B-Vision-Instruct") # Load the 8B text-only model s_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct") s_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct") # Prepare input text for testing input_text = "Write me a poem about Machine Learning." input_ids = s_tokenizer(input_text, return_tensors="pt") # Test the original 8B model outputs = s_model.generate(**input_ids, do_sample=False, max_new_tokens=10) print("8B Model Output:", s_tokenizer.decode(outputs[0])) # Patch weights from the 11B model into the 8B model model_weight = model.state_dict() s_model_dict = s_model.state_dict() skip_layer = 0 # Track skipped layers for key in s_model_dict.keys(): if "layers." in key: layer_idx = int(key.split("layers.")[1].split(".")[0]) # Extract layer index try: s_model_dict[key] = model_weight[ "language_model." + key.replace(f"layers.{layer_idx}.", f"layers.{layer_idx + skip_layer}.") ] except KeyError: skip_layer += 1 s_model_dict[key] = model_weight[ "language_model." + key.replace(f"layers.{layer_idx}.", f"layers.{layer_idx + skip_layer}.") ] else: s_model_dict[key] = model_weight["language_model." + key] # Test the patched 8B model outputs = s_model.generate(**input_ids, do_sample=False, max_new_tokens=10) print("Patched 8B Model Output:", s_tokenizer.decode(outputs[0])) # Test the original 11B model outputs = model.generate(**input_ids, do_sample=False, max_new_tokens=10) print("11B Model Output:", s_tokenizer.decode(outputs[0])) ``` ### **Example Outputs** **Prompt:** "Write me a poem about Machine Learning." **Outputs:** 1. **8B Model Output (Before Patching):** ``` <|begin_of_text|>Write me a poem about Machine Learning. Artificial minds, born from code, Learning ``` 2. **Patched 8B Model Output:** ``` <|begin_of_text|>Write me a poem about Machine Learning. In silicon halls, where data reigns ``` 3. **11B Model Output:** ``` <|begin_of_text|>Write me a poem about Machine Learning. In silicon halls, where data reigns ``` --- ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]