--- language: - km license: apache-2.0 tags: - automatic-speech-recognition - openslr - robust-speech-event - km - generated_from_trainer model-index: - name: xls-r-300m-km results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR km type: openslr args: km metrics: - name: Eval WER type: wer value: 29.26 - name: Eval CER type: cer value: 7.93 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the openslr dataset. It achieves the following results on the evaluation set: - Loss: 0.3142 - Wer: 0.3512 # Evaluation results on OpenSLR "evaluation" (self-split) (Running ./eval.py): - WER: 0.2925882809468374 - CER: 0.0792776460744666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2049 | 4.93 | 400 | 4.5570 | 1.0 | | 3.569 | 9.87 | 800 | 3.5415 | 1.0 | | 3.483 | 14.81 | 1200 | 3.3956 | 1.0 | | 2.1906 | 19.75 | 1600 | 1.1732 | 0.7897 | | 1.7968 | 24.69 | 2000 | 0.7634 | 0.6678 | | 1.615 | 29.62 | 2400 | 0.6182 | 0.5922 | | 1.52 | 34.56 | 2800 | 0.5473 | 0.5479 | | 1.4696 | 39.5 | 3200 | 0.5002 | 0.5130 | | 1.4175 | 44.44 | 3600 | 0.4752 | 0.5021 | | 1.3943 | 49.38 | 4000 | 0.4638 | 0.4944 | | Pause and Resume | | | | | | 1.3829 | 4.93 | 400 | 0.4290 | 0.4796 | | 1.3156 | 9.87 | 800 | 0.3856 | 0.4474 | | 1.2396 | 14.81 | 1200 | 0.3600 | 0.4307 | | 1.1444 | 19.75 | 1600 | 0.3423 | 0.4179 | | 1.0979 | 24.69 | 2000 | 0.3370 | 0.3884 | | 1.0714 | 29.62 | 2400 | 0.3237 | 0.3710 | | 1.0442 | 34.56 | 2800 | 0.3336 | 0.3683 | | 1.0492 | 39.5 | 3200 | 0.3166 | 0.3527 | | 1.0284 | 44.44 | 3600 | 0.3178 | 0.3566 | | 1.0302 | 49.38 | 4000 | 0.3142 | 0.3512 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0