--- tags: - clip library_name: open_clip pipeline_tag: zero-shot-image-classification license: cc-by-nc-4.0 datasets: - visheratin/laion-coco-nllb --- ## Model Summary NLLB-SigLIP-MRL is a model that combines a text encoder from the [NLLB model](https://huggingface.co/facebook/nllb-200-distilled-600M) and an image encoder from the [SigLIP](https://huggingface.co/timm/ViT-B-16-SigLIP-384) model. This allows us to extend the model capabilities to 201 languages of the Flores-200. This version of the model was trained using a variation of [Matryoshka Representation learning](https://arxiv.org/abs/2205.13147) to enable the generation of embeddings of sizes [32, 64, 128, 256, 512] in addition to the original 768. Based on the benchmarks below, embeddings of sizes 256 and 512 preserve 90%+ of the full embedding quality. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/609ede05121df5de54007033/PP5GJOgM2YVQM4RSWHKtq.png) The full embedding model sets new state-of-the-art for multilingual image and text retrieval on both XTD10 and Crossmodal-3600. | Dataset | image retrieval R@1, avg | text retrieval R@1, avg | image retrieval R@5, avg | text retrieval R@5, avg | image retrieval R@10, avg | text retrieval R@10, avg | |-----------------|:------------------------:|:------------------:|:-------------------:|:------------------:|:--------------------:|:-------------------:| | Crossmodal-3600 | 0.6079 | 0.5741 | 0.8333 | 0.8174 | 0.8922 | 0.8816 | | XTD10 | 0.6997 | 0.6433 | 0.8988 | 0.8848 | 0.9503 | 0.9449 | ## How to use ### Variable resolutions Open In Colab If you want to use the model that supports variable embedding sizes, you can do it as follows: ``` !pip install -U transformers open_clip_torch ``` ``` from transformers import AutoModel from PIL import Image import requests import torch model = AutoModel.from_pretrained("visheratin/nllb-siglip-mrl-base", device="cpu", trust_remote_code=True) image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg" image = Image.open(requests.get(image_path, stream=True).raw) class_options = ["бабочка", "butterfly", "kat"] class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"] image_logits, text_logits = model.get_logits( images=[image], texts=class_options, langs=class_langs, resolution=512 # set resolution here or set `None` to use the original resolution ) print(torch.softmax(image_logits, dim=1)) ``` ### OpenCLIP This model is also integrated into OpenCLIP so that you can use it as any other model: ``` !pip install -U open_clip_torch ``` ``` from open_clip import create_model_from_pretrained, get_tokenizer from PIL import Image import requests import torch model, transform = create_model_from_pretrained("nllb-clip-base-siglip", "mrl", device="cuda") tokenizer = get_tokenizer("nllb-clip-base-siglip") class_options = ["бабочка", "butterfly", "kat"] class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"] text_inputs = [] for i in range(len(class_options)): tokenizer.set_language(class_langs[i]) text_inputs.append(tokenizer(class_options[i])) text_inputs = torch.stack(text_inputs).squeeze(1).to("cuda") image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg" image = Image.open(requests.get(image_path, stream=True).raw) image_inputs = transform(image).unsqueeze(0).to("cuda") with torch.inference_mode(): logits_per_image, logits_per_text = model.get_logits(image_inputs, text_inputs) print(logits_per_image.softmax(dim=-1)) ``` ## Acknowledgements I thank [ML Collective](https://mlcollective.org/) for providing Google Cloud compute resources.