# BERTweet: A pre-trained language model for English Tweets
BERTweet is the first public large-scale language model pre-trained for English Tweets. BERTweet is trained based on the [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) pre-training procedure. The corpus used to pre-train BERTweet consists of 850M English Tweets (16B word tokens ~ 80GB), containing 845M Tweets streamed from 01/2012 to 08/2019 and 5M Tweets related to the **COVID-19** pandemic. The general architecture and experimental results of BERTweet can be found in our [paper](https://aclanthology.org/2020.emnlp-demos.2/):
@inproceedings{bertweet,
title = {{BERTweet: A pre-trained language model for English Tweets}},
author = {Dat Quoc Nguyen and Thanh Vu and Anh Tuan Nguyen},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
pages = {9--14},
year = {2020}
}
**Please CITE** our paper when BERTweet is used to help produce published results or is incorporated into other software.
For further information or requests, please go to [BERTweet's homepage](https://github.com/VinAIResearch/BERTweet)!
### Main results
### Pre-trained models
Model | #params | Arch. | Pre-training data
---|---|---|---
`vinai/bertweet-base` | 135M | base | 850M English Tweets (cased)
`vinai/bertweet-covid19-base-cased` | 135M | base | 23M COVID-19 English Tweets (cased)
`vinai/bertweet-covid19-base-uncased` | 135M | base | 23M COVID-19 English Tweets (uncased)
`vinai/bertweet-large` | 355M | large | 873M English Tweets (cased)
### Example usage
```python
import torch
from transformers import AutoModel, AutoTokenizer
bertweet = AutoModel.from_pretrained("vinai/bertweet-large")
tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-large")
# INPUT TWEET IS ALREADY NORMALIZED!
line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
input_ids = torch.tensor([tokenizer.encode(line)])
with torch.no_grad():
features = bertweet(input_ids) # Models outputs are now tuples
## With TensorFlow 2.0+:
# from transformers import TFAutoModel
# bertweet = TFAutoModel.from_pretrained("vinai/bertweet-large")
```
### Normalize raw input Tweets
Before applying BPE to the pre-training corpus of English Tweets, we tokenized these Tweets using `TweetTokenizer` from the NLTK toolkit and used the `emoji` package to translate emotion icons into text strings (here, each icon is referred to as a word token). We also normalized the Tweets by converting user mentions and web/url links into special tokens `@USER` and `HTTPURL`, respectively. Thus it is recommended to also apply the same pre-processing step for BERTweet-based downstream applications w.r.t. the raw input Tweets.
Please find examples of normalizing raw input Tweets at [BERTweet's homepage](https://github.com/VinAIResearch/BERTweet#preprocess)!