--- library_name: transformers tags: - colpali license: apache-2.0 datasets: - vidore/colpali_train_set language: - en base_model: - vidore/colqwen2-base pipeline_tag: visual-document-retrieval --- > [!WARNING] > EXPERIMENTAL: Wait for https://github.com/huggingface/transformers/pull/35778 to be merged before using! > [!IMPORTANT] > This version of ColQwen2 should be loaded with the `transformers 🤗` release, not with `colpali-engine`. > It was converted using the `convert_colqwen2_weights_to_hf.py` script > from the [`vidore/colqwen2-v1.0-merged`](https://huggingface.co/vidore/colqwen2-v1.0-merged) checkpoint. # ColQwen2: Visual Retriever based on Qwen2-VL-2B-Instruct with ColBERT strategy ColQwen2 is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features. It is a [Qwen2-VL-2B](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images. It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)

The HuggingFace `transformers` 🤗 implementation was contributed by Tony Wu ([@tonywu71](https://huggingface.co/tonywu71)) and Yoni Gozlan ([@yonigozlan](https://huggingface.co/yonigozlan)). ## Model Description Read the `transformers` 🤗 model card: https://huggingface.co/docs/transformers/en/model_doc/colqwen2. ## Model Training ### Dataset Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%). Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination. A validation set is created with 2% of the samples to tune hyperparameters. ## Usage ```python import torch from PIL import Image from transformers import ColQwen2ForRetrieval, ColQwen2Processor from transformers.utils.import_utils import is_flash_attn_2_available model_name = "vidore/colqwen2-v1.0-hf" model = ColQwen2ForRetrieval.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="cuda:0", # or "mps" if on Apple Silicon attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None, ).eval() processor = ColQwen2Processor.from_pretrained(model_name) # Your inputs (replace dummy images with screenshots of your documents) images = [ Image.new("RGB", (128, 128), color="white"), Image.new("RGB", (64, 32), color="black"), ] queries = [ "What is the organizational structure for our R&D department?", "Can you provide a breakdown of last year’s financial performance?", ] # Process the inputs batch_images = processor(images=images).to(model.device) batch_queries = processor(text=queries).to(model.device) # Forward pass with torch.no_grad(): image_embeddings = model(**batch_images).embeddings query_embeddings = model(**batch_queries).embeddings # Score the queries against the images scores = processor.score_retrieval(query_embeddings, image_embeddings) ``` ## Limitations - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages. - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support. ## License ColQwen2's vision language backbone model (Qwen2-VL) is under `apache-2.0` license. ColQwen2 inherits from this `apache-2.0` license. ## Contact - Manuel Faysse: manuel.faysse@illuin.tech - Hugues Sibille: hugues.sibille@illuin.tech - Tony Wu: tony.wu@illuin.tech ## Citation If you use any datasets or models from this organization in your research, please cite the original dataset as follows: ```bibtex @misc{faysse2024colpaliefficientdocumentretrieval, title={ColPali: Efficient Document Retrieval with Vision Language Models}, author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2407.01449}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.01449}, } ```