from typing import Dict, List, Any import torch from torch import autocast from diffusers import StableDiffusionPipeline import base64 from io import BytesIO # set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device.type != 'cuda': raise ValueError("need to run on GPU") class EndpointHandler(): def __init__(self, path="viba98/materialic"): # load the optimized model self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) self.pipe = self.pipe.to(device) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`dict`:. base64 encoded image """ inputs = data.pop("inputs", data) #disable_safety = True #if disable_safety: #def null_safety(images, **kwargs): # return images, False #self.pipe.safety_checker = null_safety # run inference pipeline with autocast(device.type): image = self.pipe(inputs, guidance_scale=7.5, num_inference_steps=100, num_images_per_prompt=4)["sample"][0] # encode image as base 64 buffered = BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()) # postprocess the prediction return {"image": img_str.decode()}