vdumanov commited on
Commit
fcdf97d
·
verified ·
1 Parent(s): de1df62

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +140 -0
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "stabilityai/stable-diffusion-3-medium-diffusers"
4
+ tags:
5
+ - sd3
6
+ - sd3-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - safe-for-work
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'A cat, a dog and a kitten walking along a forest path'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ ---
27
+
28
+ # suteev
29
+
30
+ This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers).
31
+
32
+
33
+ The main validation prompt used during training was:
34
+
35
+
36
+
37
+ ```
38
+ A cat, a dog and a kitten walking along a forest path
39
+ ```
40
+
41
+ ## Validation settings
42
+ - CFG: `3.0`
43
+ - CFG Rescale: `0.0`
44
+ - Steps: `20`
45
+ - Sampler: `None`
46
+ - Seed: `42`
47
+ - Resolution: `1024x1024`
48
+
49
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
50
+
51
+ You can find some example images in the following gallery:
52
+
53
+
54
+ <Gallery />
55
+
56
+ The text encoder **was not** trained.
57
+ You may reuse the base model text encoder for inference.
58
+
59
+
60
+ ## Training settings
61
+
62
+ - Training epochs: 3
63
+ - Training steps: 500
64
+ - Learning rate: 0.0004
65
+ - Effective batch size: 1
66
+ - Micro-batch size: 1
67
+ - Gradient accumulation steps: 1
68
+ - Number of GPUs: 1
69
+ - Prediction type: flow-matching
70
+ - Rescaled betas zero SNR: False
71
+ - Optimizer: adamw_bf16
72
+ - Precision: Pure BF16
73
+ - Quantised: Yes: int8-quanto
74
+ - Xformers: Not used
75
+ - LyCORIS Config:
76
+ ```json
77
+ {
78
+ "algo": "lokr",
79
+ "multiplier": 1.0,
80
+ "linear_dim": 10000,
81
+ "linear_alpha": 1,
82
+ "factor": 16,
83
+ "apply_preset": {
84
+ "target_module": [
85
+ "Attention",
86
+ "FeedForward"
87
+ ],
88
+ "module_algo_map": {
89
+ "Attention": {
90
+ "factor": 16
91
+ },
92
+ "FeedForward": {
93
+ "factor": 8
94
+ }
95
+ }
96
+ }
97
+ }
98
+ ```
99
+
100
+ ## Datasets
101
+
102
+ ### suteev
103
+ - Repeats: 5
104
+ - Total number of images: 24
105
+ - Total number of aspect buckets: 1
106
+ - Resolution: 0.262144 megapixels
107
+ - Cropped: False
108
+ - Crop style: None
109
+ - Crop aspect: None
110
+
111
+
112
+ ## Inference
113
+
114
+
115
+ ```python
116
+ import torch
117
+ from diffusers import DiffusionPipeline
118
+ from lycoris import create_lycoris_from_weights
119
+
120
+ model_id = 'stabilityai/stable-diffusion-3-medium-diffusers'
121
+ adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
122
+ lora_scale = 1.0
123
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
124
+ wrapper.merge_to()
125
+
126
+ prompt = "A cat, a dog and a kitten walking along a forest path"
127
+ negative_prompt = 'blurry, cropped, ugly'
128
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
129
+ image = pipeline(
130
+ prompt=prompt,
131
+ negative_prompt=negative_prompt,
132
+ num_inference_steps=20,
133
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
134
+ width=1024,
135
+ height=1024,
136
+ guidance_scale=3.0,
137
+ ).images[0]
138
+ image.save("output.png", format="PNG")
139
+ ```
140
+