--- license: apache-2.0 datasets: - Rahulholla/stock-analysis --- **Usage** ``` from llama_cpp import Llama from typing import Optional import time from huggingface_hub import hf_hub_download def generate_prompt(input_text: str, instruction: Optional[str] = None) -> str: text = f"### Question: {input_text}\n\n### Answer: " if instruction: text = f"### Instruction: {instruction}\n\n{text}" return text # Set up the parameters repo_id = "vdpappu/gemma2_stocks_analysis_gguf" filename = "gemma2_stocks_analysis.gguf" local_dir = "." downloaded_file_path = hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) print(f"File downloaded to: {downloaded_file_path}") # Load the model llm = Llama(model_path=downloaded_file_path) #1 is thug question = """Assume the role as a seasoned stock option analyst with a strong track record in dissecting intricate option data to discern valuable insights into stock sentiment. Proficient in utilizing advanced statistical models and data visualization techniques to forecast market trends and make informed trading decisions. Adept at interpreting option Greeks, implied volatility, .. """ prompt = generate_prompt(input_text=question) start = time.time() output = llm(prompt, temperature=0.7, top_p=0.9, top_k=50, repeat_penalty=1.5, max_tokens=200, stop=["Question:",""]) end = time.time() print(f"Inference time: {end-start:.2f} seconds \n") print(output['choices'][0]['text']) ```