--- language: - fa license: apache-2.0 base_model: vargha/whisper-large-v3 tags: - generated_from_trainer datasets: - vargha/persian_customer-service_datasets metrics: - wer model-index: - name: Whisper large V3 Persian-Tuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: persian_customer-service type: vargha/persian_customer-service_datasets args: 'config: fa, split: test' metrics: - name: Wer type: wer value: 45.70446735395189 --- # Whisper large V3 Persian-Tuned This model is a fine-tuned version of [vargha/whisper-large-v3](https://huggingface.co/vargha/whisper-large-v3) on the persian_customer-service dataset. It achieves the following results on the evaluation set: - Loss: 0.6814 - Wer: 45.7045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0019 | 23.2558 | 2000 | 0.6164 | 46.6590 | | 0.0001 | 46.5116 | 4000 | 0.6814 | 45.7045 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1