--- language: - hi license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper large V3 Persian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: fa split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 27.514627460072834 --- # Whisper large V3 Persian This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2455 - Wer: 27.5146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1769 | 0.4055 | 2000 | 0.3084 | 33.8048 | | 0.1033 | 0.8110 | 4000 | 0.2455 | 27.5146 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1