--- library_name: transformers license: apache-2.0 base_model: m3hrdadfi/hubert-base-persian-speech-emotion-recognition tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Hubert-fine-tuned-persian results: [] --- # Hubert-fine-tuned-persian This model is a fine-tuned version of [m3hrdadfi/hubert-base-persian-speech-emotion-recognition](https://huggingface.co/m3hrdadfi/hubert-base-persian-speech-emotion-recognition) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5445 - Accuracy: 0.7483 - Precision: 0.7 - Recall: 0.7836 - F1: 0.7394 - Precision Neutral: 0.7986 - Recall Neutral: 0.7188 - F1 Neutral: 0.7566 - Precision Anger: 0.7 - Recall Anger: 0.7836 - F1 Anger: 0.7394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: reduce_lr_on_plateau - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Precision Neutral | Recall Neutral | F1 Neutral | Precision Anger | Recall Anger | F1 Anger | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:| | 0.7337 | 1.0 | 294 | 0.6602 | 0.5816 | 0.5216 | 0.9925 | 0.6838 | 0.9744 | 0.2375 | 0.3819 | 0.5216 | 0.9925 | 0.6838 | | 0.5922 | 2.0 | 588 | 0.5445 | 0.7483 | 0.7 | 0.7836 | 0.7394 | 0.7986 | 0.7188 | 0.7566 | 0.7 | 0.7836 | 0.7394 | | 0.4774 | 3.0 | 882 | 0.7353 | 0.7177 | 0.7257 | 0.6119 | 0.6640 | 0.7127 | 0.8063 | 0.7566 | 0.7257 | 0.6119 | 0.6640 | | 0.4527 | 4.0 | 1176 | 0.6275 | 0.7143 | 0.6582 | 0.7761 | 0.7123 | 0.7794 | 0.6625 | 0.7162 | 0.6582 | 0.7761 | 0.7123 | | 0.5922 | 5.0 | 1470 | 0.8464 | 0.7347 | 0.6647 | 0.8433 | 0.7434 | 0.8306 | 0.6438 | 0.7254 | 0.6647 | 0.8433 | 0.7434 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 2.18.0 - Tokenizers 0.21.0