# ModernBERT-BizClassifier - Business Relevance Classifier ## 📌 Overview ModernBERT-BizClassifier is a **fine-tuned ModernBERT model** that classifies text from **any source** (social media, news, reports, etc.) and determines whether it is **useful for businesses**. The model distinguishes between: - **Business_Action_Direct**: Clearly relevant business information (e.g., financial reports, earnings, funding rounds). - **Business_Intelligence_Indirect**: Text that implies business relevance (e.g., regulatory news, economic trends, emerging markets). - **Not_Business_Relevant**: Text that contains no useful business insights. ## 🛠 Model Details | Hyperparameter | Value | |-----------------------|----------------| | **Base Model** | `ModernBERT-base` | | **Max Context Length** | `8192 tokens` | | **Batch Size** | `32` | | **Learning Rate** | `1e-5` | | **Weight Decay** | `0.005` | | **Epochs** | `2.0` | | **Warmup Ratio** | `0.1` | | **Precision Used** | `BF16` if CUDA available | | **Problem Type** | `Multi-label classification` | ## 📊 Evaluation Results | Metric | Score | |-----------------------------|--------| | **Final Validation Loss** | `0.2940` | | **Micro F1 Score** | `0.8049` | | **Macro F1 Score** | `0.8042` | | **Evaluation Runtime** | `3.48 seconds` | | **Samples Processed Per Second** | `239.09` | | **Steps Processed Per Second** | `7.48` | ## 🏗 Model Card - **Tags**: `business-classification`, `BERT`, `financial-analysis`, `text-classification` ```python { 1: "Business_Action_Direct", 2: "Business_Intelligence_Indirect", 3: "Not_Business_Relevant" } ```