{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae56bc94a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae56bc94af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae56bc94b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae56bc94c10>", "_build": "<function ActorCriticPolicy._build at 0x7ae56bc94ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7ae56bc94d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae56bc94dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae56bc94e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae56bc94ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae56bc94f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae56bc95000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae56bc95090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae56bc2b440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705548258768900904, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJDytz5/thQ/VJ87vXM5ir4VZvI9a+CcvQAAAAAAAAAAzWwhPMPddbrsWDM6AHt/tFEzHbsN+Uy5AACAPwAAgD8AWCa8CtirPyn8ozwknrS+vw3svHYp0LwAAAAAAAAAAM0LmLwUIIS6a7SmOjxO5zXMyUa6PLHAuQAAgD8AAIA/ZnmaPEhhkrpfqz07Zt7MNPrTI7vGxFu6AACAPwAAgD+a3dc7XMcjupBNibmeEgQ14iR3Ozi9oDgAAIA/AACAP80foTwU8Iy6mujPu2cg5De2Sam6WnYAtwAAgD8AAIA/zX0HvSnAd7ozcT05PslFtuzC0DryhFe4AACAPwAAgD8aIUa9w31FuuFWS7mrigewqpwLu36RbDgAAIA/AACAP5qevTyfHZO7EuMvvGCOizwbUNs80FpuvQAAgD8AAIA/QBKXvcMxAbr2+Vk6vQuXNeb2zLlWcny5AACAPwAAgD9mW+g8viORPsR4FL6XEJS+eJS8PFpz67sAAAAAAAAAABoWg71S+Ja5qlEguhTC1DUqgji7onA5OQAAgD8AAIA/pmTKvT3KTbm1FhU6zeDEsl80G7xYLDO5AACAPwAAAAAzJIW8j952umDsaDoVQhC2tzsNOgwFhrkAAIA/AACAP6qTlT67dRQ/C9RlvvU0ob74pjA9nelFOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQnwCjk+5iMAWyUTegDjAF0lEdAk6fl6Rhc7nV9lChoBkdAZVdwtrbg0mgHTegDaAhHQJOpR2wFC9h1fZQoaAZHQGVbPkzXSShoB03oA2gIR0CTqzs5n13/dX2UKGgGR0BhQ8x20Re1aAdN6ANoCEdAk6xN7OVxCXV9lChoBkdAY5BMMZxaPmgHTegDaAhHQJO4RV81Gb11fZQoaAZHQGBdK+8Gs3hoB03oA2gIR0CTuHcFyJbddX2UKGgGR0Bj/HEKmbb2aAdN6ANoCEdAk74j850bLnV9lChoBkdAYzts7dSEUWgHTegDaAhHQJPF6mm+Cbt1fZQoaAZHQGTwVf3N9phoB03oA2gIR0CTx3imVJL/dX2UKGgGR0AVPaxoqTbGaAdNAQFoCEdAk8u1CkXUIHV9lChoBkdAZ52zAvcrRWgHTegDaAhHQJPO9ZMcp9Z1fZQoaAZHQGZB8oYvWYpoB03oA2gIR0CT0zJXQtz0dX2UKGgGR0BkfNvIfbKzaAdN6ANoCEdAk+jxMBZIQXV9lChoBkdAZEx9rGipN2gHTegDaAhHQJP3/FPznRt1fZQoaAZHQFslf2K2rn1oB03oA2gIR0CT+RB/qgRLdX2UKGgGR0Bn+AFC9h7WaAdN6ANoCEdAk/lpqh11XHV9lChoBkdAYPoOMERramgHTegDaAhHQJP7hnctXgd1fZQoaAZHQF7dSGrS3LFoB03oA2gIR0CT/IKNyYG/dX2UKGgGR0BAl4nOSntOaAdL/2gIR0CT/RoLG7z1dX2UKGgGR0BgsBH5JsfraAdN6ANoCEdAk/3NCu2ZzHV9lChoBkdAY0EXVLBbfWgHTegDaAhHQJP/sxHoX9B1fZQoaAZHQGJlGD+R5kdoB03oA2gIR0CUAM/UvwmWdX2UKGgGR0Bg/TN8ma6SaAdN6ANoCEdAlAyLP6be/HV9lChoBkdAYvTZL7Gec2gHTegDaAhHQJQR0ZVGTcJ1fZQoaAZHQGBG2OZLIxRoB03oA2gIR0CUGDnivPkadX2UKGgGR0BlFgeA/cFhaAdN6ANoCEdAlBnocWCVbHV9lChoBkdAXtBTOxB3R2gHTegDaAhHQJQezn5i3G51fZQoaAZHQGJA2/JvHcVoB03oA2gIR0CUImMNtqHodX2UKGgGR0BfHxFNL128aAdN6ANoCEdAlChlBD5TInV9lChoBkdAYesUAT7EYWgHTegDaAhHQJRPYGMXJo11fZQoaAZHQGDf1ZDArQRoB03oA2gIR0CUUD4o7V8UdX2UKGgGR0BlA5JiAlOXaAdN6ANoCEdAlFCGfbsWwnV9lChoBkdAZJQUwBYFJWgHTegDaAhHQJRSTCJoCdV1fZQoaAZHQGE6t/vv0AdoB03oA2gIR0CUU1oaUA1fdX2UKGgGR0Be95BkZrHmaAdN6ANoCEdAlFQUmlZX+3V9lChoBkdAZrtm1YyO72gHTegDaAhHQJRUxtGd7OV1fZQoaAZHQGVhQWN3np1oB03oA2gIR0CUVtcNH6MzdX2UKGgGR0BbyvrSmZVoaAdN6ANoCEdAlFffzjFQ23V9lChoBkdAPLdFnZkCm2gHTQ0BaAhHQJRmSeJ53Tx1fZQoaAZHQGJk8pkPMB9oB03oA2gIR0CUZ1eJ53TvdX2UKGgGR0BiPy/EfkmyaAdN6ANoCEdAlGwnxOLzgHV9lChoBkdAZ0PmlImPYGgHTegDaAhHQJRxyydFvyd1fZQoaAZHQGOG//FR51NoB03oA2gIR0CUcz0dBBzFdX2UKGgGR0A8AVRDTjNqaAdL/GgIR0CUdi0Y0l7ddX2UKGgGR0BjiwxYaHbiaAdN6ANoCEdAlHeiPU8V6HV9lChoBkdAMBAnMMZxaWgHS8RoCEdAlHhXg9/z8XV9lChoBkdAYbIuHN5dGGgHTegDaAhHQJR6rbtZ3cJ1fZQoaAZHQGT+9CmdiDxoB03oA2gIR0CUfuhn8KoidX2UKGgGR0BAd1/tpmEoaAdNDwFoCEdAlJwet8uzyHV9lChoBkdAYHlTrE9+w2gHTegDaAhHQJSkSsQumJp1fZQoaAZHQFxbttQ9A5doB03oA2gIR0CUpSERaouPdX2UKGgGR0Bj6BZyMkyDaAdN6ANoCEdAlKVlGsmv4nV9lChoBkdAaQliw0O3D2gHTegDaAhHQJSm8vBacI91fZQoaAZHQGN3GiHqNZNoB03oA2gIR0CUp/H0se4kdX2UKGgGR0BlEPxJ/XoUaAdN6ANoCEdAlKlhPoFFD3V9lChoBkdAXqQe0Xxe9mgHTegDaAhHQJSronNPgvV1fZQoaAZHQGHW3xWkrPNoB03oA2gIR0CUrNz1schldX2UKGgGR0BL8J7sv7FbaAdNAQFoCEdAlLPdLxqfvnV9lChoBkdAYwHIFvAGjmgHTegDaAhHQJS44sz2vjh1fZQoaAZHQGFeA2qDK5loB03oA2gIR0CUyVeIl+mWdX2UKGgGR0BlHEYdhiLEaAdN6ANoCEdAlMuQF9roGXV9lChoBkdAYc9T/hl182gHTegDaAhHQJTStMj/uLJ1fZQoaAZHQGaX7MPjGT9oB03oA2gIR0CU2GEUTL4fdX2UKGgGR0Beo3lXA/LUaAdN6ANoCEdAlNwc1Gb1AnV9lChoBkdAX7NTsIE8rGgHTegDaAhHQJTjvCyhSLt1fZQoaAZHQEEyxKxs2vVoB00EAWgIR0CU58gow22odX2UKGgGR0BmH40CRwIdaAdN6ANoCEdAlQA4dELH/HV9lChoBkdAYnnqTr3TNWgHTegDaAhHQJUIoWepXIV1fZQoaAZHQGCie6qbSZ1oB03oA2gIR0CVCVqDsdDIdX2UKGgGR0BgFEdDIBBBaAdN6ANoCEdAlQsYiHIp6XV9lChoBkdAY/yYm9g4O2gHTegDaAhHQJUMDgk1Muh1fZQoaAZHQFy8b/wRXfZoB03oA2gIR0CVDW3V09yMdX2UKGgGR0BjLp9RaX8gaAdN6ANoCEdAlQ+B3zMA3nV9lChoBkdAYC1VPva11GgHTegDaAhHQJUQpeokzGh1fZQoaAZHQGE+/PX05ENoB03oA2gIR0CVF5/ZuhsZdX2UKGgGR0BmqOCVbA1vaAdN6ANoCEdAlRxm+bmU4nV9lChoBkdAYyu+mm+Cb2gHTegDaAhHQJUnnyPMjeN1fZQoaAZHQGXJmdRR/ExoB03oA2gIR0CVLWZYPoV3dX2UKGgGR0Bf+iLZSNwSaAdN6ANoCEdAlTCM+u/1x3V9lChoBkdAW6rdGiHqNmgHTegDaAhHQJU0CeCkGiZ1fZQoaAZHQGP9rWI42jxoB03oA2gIR0CVOZdOIqLCdX2UKGgGR0BnUSWszVMFaAdN6ANoCEdAlT2IDs+mnHV9lChoBkdANjQUQCjk/GgHS81oCEdAlT9Atrbg0nV9lChoBkdAZk+xM36yjmgHTegDaAhHQJVCgdXDFZR1fZQoaAZHQGS2wcghbGFoB03oA2gIR0CVW6Lgn+hodX2UKGgGR0BlBiEeyRjjaAdN6ANoCEdAlVxYn0Cih3V9lChoBkdAXds1VHWjGmgHTegDaAhHQJVeE3yZrpJ1fZQoaAZHQF9TQJokAxVoB03oA2gIR0CVXw9KEnLJdX2UKGgGR0BjhX7xd6cBaAdN6ANoCEdAlWDMpTdcjnV9lChoBkdAZxI1m8M/hWgHTegDaAhHQJVjqpda+vh1fZQoaAZHQGHRR5LRKHxoB03oA2gIR0CVZT/H5rP/dX2UKGgGR0Bjk2pS75EdaAdN6ANoCEdAlW6Z00WM0nV9lChoBkdAYxoc4o7V8WgHTegDaAhHQJV0A8ox59p1fZQoaAZHQF8DKWcBltloB03oA2gIR0CVgzqKxcFAdX2UKGgGR0BjToKIBRyfaAdN6ANoCEdAlYi+okzGgnV9lChoBkdAZJAllbu+iGgHTegDaAhHQJWOd3gUDdR1fZQoaAZHQGckKur6tT1oB03oA2gIR0CVk9D0163RdX2UKGgGR0BiobCBPKuCaAdN6ANoCEdAlZnOOwPiDXV9lChoBkdAY5zNnoPkJmgHTegDaAhHQJWcbq6e5Fx1fZQoaAZHQFx9A3kxREZoB03oA2gIR0CVoRv6j323dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |