--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer model-index: - name: layoutlmv3-custom_no_text results: [] --- # layoutlmv3-custom_no_text This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3487 - eval_noise: {'precision': 0.6914893617021277, 'recall': 0.7210776545166403, 'f1': 0.7059736229635376, 'number': 631} - eval_signal: {'precision': 0.684931506849315, 'recall': 0.7142857142857143, 'f1': 0.6993006993006993, 'number': 630} - eval_overall_precision: 0.6882 - eval_overall_recall: 0.7177 - eval_overall_f1: 0.7026 - eval_overall_accuracy: 0.9325 - eval_runtime: 0.9604 - eval_samples_per_second: 37.484 - eval_steps_per_second: 5.206 - epoch: 24.0 - step: 432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0