from scipy.spatial.distance import cdist from scipy.optimize import linear_sum_assignment import numpy as np def zeromean_normalize(vertices): vertices = np.array(vertices) vertices = vertices - vertices.mean(axis=0) vertices = vertices / (1e-6 + np.linalg.norm(vertices, axis=1)[:, None]) # project all verts to sphere (not what we meant) return vertices def preregister_mean_std(verts_to_transform, target_verts, single_scale=True): mu_target = target_verts.mean(axis=0) mu_in = verts_to_transform.mean(axis=0) std_target = np.std(target_verts, axis=0) std_in = np.std(verts_to_transform, axis=0) if np.any(std_in == 0): std_in[std_in == 0] = 1 if np.any(std_target == 0): std_target[std_target == 0] = 1 if np.any(np.isnan(std_in)): std_in[np.isnan(std_in)] = 1 if np.any(np.isnan(std_target)): std_target[np.isnan(std_target)] = 1 if single_scale: std_target = np.linalg.norm(std_target) std_in = np.linalg.norm(std_in) transformed_verts = (verts_to_transform - mu_in) / std_in transformed_verts = transformed_verts * std_target + mu_target return transformed_verts def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=100.0, ce=1.0, normalized=True, prenorm=False, preregister=True, register=True, single_scale=True): pd_vertices = np.array(pd_vertices) gt_vertices = np.array(gt_vertices) # Step 0: Prenormalize / preregister if prenorm: pd_vertices = zeromean_normalize(pd_vertices) gt_vertices = zeromean_normalize(gt_vertices) if preregister: pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale) pd_edges = np.array(pd_edges) gt_edges = np.array(gt_edges) # Step 0.5: Register if register: # find the optimal rotation, translation, and scale from scipy.spatial.transform import Rotation as R from scipy.optimize import minimize def transform(x, pd_vertices): # x is a 7-element vector, first 3 elements are the rotation vector, next 3 elements are the translation vector, finally scale rotation = R.from_rotvec(x[:3]) translation = x[3:6] scale = x[6] return scale * rotation.apply(pd_vertices) + translation def cost_function(x, pd_vertices, gt_vertices): pd_vertices_transformed = transform(x, pd_vertices) distances = cdist(pd_vertices_transformed, gt_vertices, metric='euclidean') row_ind, col_ind = linear_sum_assignment(distances) translation_costs = np.sum(distances[row_ind, col_ind]) return translation_costs x0 = np.array([0, 0, 0, 0, 0, 0, 1]) # minimize subject to scale > 1e-6 # res = minimize(cost_function, x0, args=(pd_vertices, gt_vertices), constraints={'type': 'ineq', 'fun': lambda x: x[6] - 1e-6}) res = minimize(cost_function, x0, args=(pd_vertices, gt_vertices), bounds=[(-np.pi, np.pi), (-np.pi, np.pi), (-np.pi, np.pi), (-500, 500), (-500, 500), (-500, 500), (0.1, 3)]) # print("scale:", res.x) pd_vertices = transform(res.x, pd_vertices) # Step 1: Bipartite Matching distances = cdist(pd_vertices, gt_vertices, metric='euclidean') row_ind, col_ind = linear_sum_assignment(distances) # Step 2: Vertex Translation translation_costs = np.sum(distances[row_ind, col_ind]) # Additional: Vertex Deletion unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind) deletion_costs = cv * len(unmatched_pd_indices) # Step 3: Vertex Insertion unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind) insertion_costs = cv * len(unmatched_gt_indices) # Step 4: Edge Deletion and Insertion updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if edge[0] in row_ind and edge[1] in row_ind] pd_edges_set = set(map(tuple, [set(edge) for edge in updated_pd_edges])) gt_edges_set = set(map(tuple, [set(edge) for edge in gt_edges])) # Delete edges not in ground truth edges_to_delete = pd_edges_set - gt_edges_set #deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[edge[0]] - pd_vertices[edge[1]]) for edge in edges_to_delete) vert_tf = [np.where(col_ind == v)[0][0] if v in col_ind else 0 for v in range(len(gt_vertices))] deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[vert_tf[edge[0]]] - pd_vertices[vert_tf[edge[1]]]) for edge in edges_to_delete) # Insert missing edges from ground truth edges_to_insert = gt_edges_set - pd_edges_set insertion_edge_costs = ce * sum(np.linalg.norm(gt_vertices[edge[0]] - gt_vertices[edge[1]]) for edge in edges_to_insert) # Step 5: Calculation of WED WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs # print("translation_costs, deletion_costs, insertion_costs, deletion_edge_costs, insertion_edge_costs") # print(translation_costs, deletion_costs, insertion_costs, deletion_edge_costs, insertion_edge_costs) if normalized: total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum() WED = WED / total_length_of_gt_edges # print ("Total length", total_length_of_gt_edges) return WED