--- license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - generated_from_trainer metrics: - rouge - sacrebleu model-index: - name: test_llm_nllb_100_e_12_lr3e5_ada results: [] --- # test_llm_nllb_100_e_12_lr3e5_ada This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5388 - Rouge1: 0.6155 - Rouge2: 0.3817 - Rougel: 0.57 - Sacrebleu: 23.323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 237 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 0.5121 | 1.0 | 2040 | 0.5072 | 0.5877 | 0.3511 | 0.5432 | 20.8262 | | 0.4381 | 2.0 | 4080 | 0.4802 | 0.6022 | 0.3684 | 0.5572 | 21.9614 | | 0.3465 | 3.0 | 6120 | 0.4816 | 0.6143 | 0.3806 | 0.569 | 23.0564 | | 0.3084 | 4.0 | 8160 | 0.4832 | 0.6172 | 0.3872 | 0.5726 | 23.4185 | | 0.2836 | 5.0 | 10200 | 0.4902 | 0.6196 | 0.3883 | 0.5751 | 23.7412 | | 0.2479 | 6.0 | 12240 | 0.5001 | 0.6182 | 0.3832 | 0.5719 | 23.1833 | | 0.2036 | 7.0 | 14280 | 0.5112 | 0.6191 | 0.3865 | 0.5746 | 23.1771 | | 0.1973 | 8.0 | 16320 | 0.5190 | 0.6207 | 0.3865 | 0.5735 | 23.2226 | | 0.1615 | 9.0 | 18360 | 0.5258 | 0.619 | 0.3877 | 0.5733 | 23.7005 | | 0.1546 | 10.0 | 20400 | 0.5335 | 0.6172 | 0.3835 | 0.5708 | 23.458 | | 0.1345 | 11.0 | 22440 | 0.5336 | 0.6125 | 0.3786 | 0.5665 | 23.1359 | | 0.1294 | 12.0 | 24480 | 0.5388 | 0.6155 | 0.3817 | 0.57 | 23.323 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1