--- datasets: - sciq - metaeval/ScienceQA_text_only - GAIR/lima - Open-Orca/OpenOrca - openbookqa language: - en tags: - upstage - llama - instruct - instruction pipeline_tag: text-generation --- # LLaMa-30b-instruct model card ## Model Details ### Model Developers - [Upstage](https://en.upstage.ai) ### Backbone Model - [LLaMA](https://github.com/facebookresearch/llama/tree/llama_v1) ### Variations - It has different model parameter sizes and sequence lengths: [30B/1024](https://huggingface.co/upstage/llama-30b-instruct), [30B/2048](https://huggingface.co/upstage/llama-30b-instruct-2048), [65B/1024](https://huggingface.co/upstage/llama-65b-instruct). ### Input - Models solely process textual input. ### Output - Models solely generate textual output. ### License - This model is under a **Non-commercial** Bespoke License and governed by the Meta license. You should only use this repository if you have been granted access to the model by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform), but have either lost your copy of the weights or encountered issues converting them to the Transformers format. ### Where to send comments - Instructions on how to provide feedback or comments on a model can be found by opening an issue in the [Hugging Face community's model repository](https://huggingface.co/upstage/llama-30b-instruct-2048/discussions). ## Dataset Details ### Used Datasets - [openbookqa](https://huggingface.co/datasets/openbookqa) - [sciq](https://huggingface.co/datasets/sciq) - [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca) - [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - [GAIR/lima](https://huggingface.co/datasets/GAIR/lima) ## Hardware and Software ### Hardware - We utilized an A100 for training our model. ### Training Factors - We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace trainer](https://huggingface.co/docs/transformers/main_classes/trainer). ## Evaluation Results ### Overview - We conducted a performance evaluation based on the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`. We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463). ### Main Results | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | |-----------------------------------------------|---------|-------|-----------|-------|------------| | llama-65b-instruct (***Ours***, ***Local Reproduction***) | **69.4** | **67.6** | **86.5** | **64.9** | **58.8** | | llama-30b-instruct-2048 (***Ours***, ***Open LLM Leaderboard***) | 67.0 | 64.9 | 84.9 | 61.9 | 56.3 | | Llama-2-70b-chat-hf | 66.8 | 64.6 | 85.9 | 63.9 | 52.8 | | llama-30b-instruct (***Ours***, ***Open LLM Leaderboard***) | 65.2 | 62.5 | 86.2 | 59.4 | 52.8 | | falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | llama-65b | 62.1 | 57.6 | 84.3 | 63.4 | 43.0 | ### Scripts - Prepare evaluation environments: ``` # clone the repository git clone https://github.com/EleutherAI/lm-evaluation-harness.git # check out the specific commit git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463 # change to the repository directory cd lm-evaluation-harness ``` ## Ethical Issues ### Ethical Considerations - There were no ethical issues involved, as we did not include the benchmark test set or the training set in the model's training process. ## Contact Us ### Why Upstage LLM? - [Upstage](https://en.upstage.ai)'s LLM research has yielded remarkable results. Our 30B model size **outperforms all models worldwide**, establishing itself as the leading performer. Recognizing the immense potential for private LLM adoption within companies, we invite you to effortlessly implement a private LLM and fine-tune it with your own data. For a seamless and tailored solution, please don't hesitate to reach out to us [(click here to mail)]. [(click here to mail)]: mailto:contact@upstage.ai