--- license: apache-2.0 language: - en - ar - hy - zh - fr - de - he - hi - id - it - ja - ko - fa - pl - pt - ru - es - th - tr - uk - vi pipeline_tag: feature-extraction tags: - clip - vision datasets: - sbu_captions - visual_genome - ChristophSchuhmann/MS_COCO_2017_URL_TEXT - Ziyang/yfcc15m ---

UForm

Pocket-Sized Multimodal AI
For Content Understanding and Generation
In Python, JavaScript, and Swift

--- The `uform3-image-text-multilingual-base` UForm model is a tiny vision and multilingual language encoder, covering __21 languages__, mapping them into a shared vector space. This model produces up to __256-dimensional embeddings__ and is made of: * Text encoder: 12-layer BERT for up to 50 input tokens. * Visual encoder: ViT-B/16 for images of 224 x 224 resolution. Unlike most CLIP-like multomodal models, this model shares 4 layers between the text and visual encoder to allow for more data- and parameter-efficient training. Also unlike most models, UForm provides checkpoints compatible with PyTorch, ONNX, and CoreML, covering the absolute majority of AI-capable devices, with pre-quantized weights and inference code. If you need a larger, more accurate, or multilingual model, check our [HuggingFace Hub](https://huggingface.co/unum-cloud/). For more details on running the model, check out the [UForm GitHub repository](https://github.com/unum-cloud/uform/). ## Evaluation For all evaluations, the multimodal part was used unless otherwise stated. ### Monolingual | Dataset | Recall@1 | Recall@5 | Recall@10 | | :-------- | ------: | --------: | --------: | | Zero-Shot Flickr | 0.558 | 0.813 | 0.874 | | MS-COCO ¹ | 0.401 | 0.680 | 0.781 | > ¹ It's important to note, that the MS-COCO train split was present in the training data. ### Multilingual Recall@10 on the [XTD-10](https://github.com/adobe-research/Cross-lingual-Test-Dataset-XTD10) dataset: | English | German | Spanish | French | Italian | Russian | Japanese | Korean | Turkish | Chinese | Polish | | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | ------:| | 96.1 | 93.5 | 95.7 | 94.1 | 94.4 | 90.4 | 90.2 | 91.3 | 95.2 | 93.8 | 95.8 | Recall@1, Recall@5, and Recall@10 on the [COCO-SM](https://github.com/kimihailv/coco-sm/tree/main) dataset: | Target Language | OpenCLIP @ 1 | UForm @ 1 | OpenCLIP @ 5 | UForm @ 5 | OpenCLIP @ 10 | UForm @ 10 | Speakers | | :-------------------- | -----------: | ------------: | -----------: | -------------:| ------------: | --------------:| -------: | | Arabic | 22.7 | **31.7** | 44.9 | **57.8** | 55.8 | **69.2** | 274 M | | Armenian | 5.6 | **22.0** | 14.3 | **44.7** | 20.2 | **56.0** | 4 M | | Chinese | 27.3 | **32.2** | 51.3 | **59.0** | 62.1 | **70.5** | 1'118 M | | English | **37.8** | 37.7 | 63.5 | **65.0** | 73.5 | **75.9** | 1'452 M | | French | 31.3 | **35.4** | 56.5 | **62.6** | 67.4 | **73.3** | 274 M | | German | 31.7 | **35.1** | 56.9 | **62.2** | 67.4 | **73.3** | 134 M | | Hebrew | 23.7 | **26.7** | 46.3 | **51.8** | 57.0 | **63.5** | 9 M | | Hindi | 20.7 | **31.3** | 42.5 | **57.9** | 53.7 | **69.6** | 602 M | | Indonesian | 26.9 | **30.7** | 51.4 | **57.0** | 62.7 | **68.6** | 199 M | | Italian | 31.3 | **34.9** | 56.7 | **62.1** | 67.1 | **73.1** | 67 M | | Japanese | 27.4 | **32.6** | 51.5 | **59.2** | 62.6 | **70.6** | 125 M | | Korean | 24.4 | **31.5** | 48.1 | **57.8** | 59.2 | **69.2** | 81 M | | Persian | 24.0 | **28.8** | 47.0 | **54.6** | 57.8 | **66.2** | 77 M | | Polish | 29.2 | **33.6** | 53.9 | **60.1** | 64.7 | **71.3** | 41 M | | Portuguese | 31.6 | **32.7** | 57.1 | **59.6** | 67.9 | **71.0** | 257 M | | Russian | 29.9 | **33.9** | 54.8 | **60.9** | 65.8 | **72.0** | 258 M | | Spanish | 32.6 | **35.6** | 58.0 | **62.8** | 68.8 | **73.7** | 548 M | | Thai | 21.5 | **28.7** | 43.0 | **54.6** | 53.7 | **66.0** | 61 M | | Turkish | 25.5 | **33.0** | 49.1 | **59.6** | 60.3 | **70.8** | 88 M | | Ukranian | 26.0 | **30.6** | 49.9 | **56.7** | 60.9 | **68.1** | 41 M | | Vietnamese | 25.4 | **28.3** | 49.2 | **53.9** | 60.3 | **65.5** | 85 M | | | | | | | | | | | Mean | 26.5±6.4 | **31.8±3.5** | 49.8±9.8 | **58.1±4.5** | 60.4±10.6 | **69.4±4.3** | - | | Google Translate | 27.4±6.3 | **31.5±3.5** | 51.1±9.5 | **57.8±4.4** | 61.7±10.3 | **69.1±4.3** | - | | Microsoft Translator | 27.2±6.4 | **31.4±3.6** | 50.8±9.8 | **57.7±4.7** | 61.4±10.6 | **68.9±4.6** | - | | Meta NLLB | 24.9±6.7 | **32.4±3.5** | 47.5±10.3 | **58.9±4.5** | 58.2±11.2 | **70.2±4.3** | - | For a deeper comparison of output ranking check the following table for the Normalized Discounted Cumulative Gains for the first 20 results - NDCG@20: | | Arabic | Armenian | Chinese | French | German | Hebrew | Hindi | Indonesian | Italian | Japanese | Korean | Persian | Polish | Portuguese | Russian | Spanish | Thai | Turkish | Ukranian | Vietnamese | Mean (all) | Mean (Google Translate) | Mean(Microsoft Translator) | Mean(NLLB) | :------------ | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | | OpenCLIP NDCG | 0.639 | 0.204 | 0.731 | 0.823 | 0.806 | 0.657 | 0.616 | 0.733 | 0.811 | 0.737 | 0.686 | 0.667 | 0.764 | 0.832 | 0.777 | 0.849 | 0.606 | 0.701 | 0.704 | 0.697 | 0.716 ± 0.149 | 0.732 ± 0.145 | 0.730 ± 0.149 | 0.686 ± 0.158 | UForm NDCG | 0.868 | 0.691 | 0.880 | 0.932 | 0.927 | 0.791 | 0.879 | 0.870 | 0.930 | 0.885 | 0.869 | 0.831 | 0.897 | 0.897 | 0.906 | 0.939 | 0.822 | 0.898 | 0.851 | 0.818 | 0.875 ± 0.064 | 0.869 ± 0.063 | 0.869 ± 0.066 | 0.888 ± 0.064 ## Installation ```bash pip install "uform[torch,onnx]" ``` ## Usage To load the model: ```python from uform import get_model, Modality import requests from io import BytesIO from PIL import Image model_name = 'unum-cloud/uform3-image-text-multilingual-base' modalities = [Modality.TEXT_ENCODER, Modality.IMAGE_ENCODER] processors, models = get_model(model_name, modalities=modalities) model_text = models[Modality.TEXT_ENCODER] model_image = models[Modality.IMAGE_ENCODER] processor_text = processors[Modality.TEXT_ENCODER] processor_image = processors[Modality.IMAGE_ENCODER] ``` To encode the content: ```python text = 'a cityscape bathed in the warm glow of the sun, with varied architecture and a towering, snow-capped mountain rising majestically in the background' image_url = 'https://media-cdn.tripadvisor.com/media/photo-s/1b/28/6b/53/lovely-armenia.jpg' image_url = Image.open(BytesIO(requests.get(image_url).content)) image_data = processor_image(image) text_data = processor_text(text) image_features, image_embedding = model_image.encode(image_data, return_features=True) text_features, text_embedding = model_text.encode(text_data, return_features=True) ```