|
import uform |
|
import torch |
|
import coremltools as ct |
|
from os.path import join |
|
from argparse import ArgumentParser |
|
|
|
class TextEncoder(torch.nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.model = model.eval() |
|
|
|
def forward(self, input_ids, attention_mask): |
|
features = self.model.forward_features( |
|
input_ids, attention_mask |
|
) |
|
|
|
embeddings = self.model.forward_embedding( |
|
features, attention_mask |
|
) |
|
|
|
return features, embeddings |
|
|
|
|
|
class ImageEncoder(torch.nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.model = model.eval() |
|
|
|
def forward(self, image): |
|
features = self.model.forward_features( |
|
image |
|
) |
|
|
|
embeddings = self.model.forward_embedding( |
|
features |
|
) |
|
|
|
return features, embeddings |
|
|
|
def convert_model(opts): |
|
src_model = uform.get_model(opts.model_name) |
|
input_ids = torch.ones(1, src_model.text_encoder.max_position_embeddings, dtype=torch.int32) |
|
attention_mask = torch.ones(1, src_model.text_encoder.max_position_embeddings, dtype=torch.int32) |
|
image = torch.ones(1, 3, src_model.image_encoder.image_size, src_model.image_encoder.image_size, dtype=torch.float32) |
|
|
|
print('Tracing models…') |
|
image_encoder = ImageEncoder(src_model.image_encoder).eval() |
|
image_encoder = torch.jit.trace(image_encoder, image) |
|
text_encoder = TextEncoder(src_model.text_encoder).eval() |
|
text_encoder = torch.jit.trace(text_encoder, (input_ids, attention_mask)) |
|
|
|
print('Converting models…') |
|
|
|
if opts.image_batchsize_lb == opts.image_batchsize_ub: |
|
image_batch_dim_shape = opts.image_batchsize_lb |
|
else: |
|
image_batch_dim_shape = ct.RangeDim(lower_bound=opts.image_batchsize_lb, upper_bound=opts.image_batchsize_ub, default=1) |
|
|
|
image_encoder = ct.convert( |
|
image_encoder, |
|
convert_to='mlprogram', |
|
inputs=[ |
|
ct.TensorType( |
|
name='image', |
|
shape=(image_batch_dim_shape,) + image.shape[1:], |
|
dtype=image.numpy().dtype |
|
)], |
|
outputs=[ |
|
ct.TensorType( |
|
name='features' |
|
), |
|
ct.TensorType( |
|
name='embeddings' |
|
) |
|
], |
|
compute_precision=ct.precision.FLOAT16 if opts.use_fp16 else ct.precision.FLOAT32 |
|
) |
|
|
|
if opts.text_batchsize_lb == opts.text_batchsize_ub: |
|
text_batch_dim_shape = opts.text_batchsize_lb |
|
else: |
|
text_batch_dim_shape = ct.RangeDim(lower_bound=opts.text_batchsize_lb, upper_bound=opts.text_batchsize_ub, default=1) |
|
|
|
text_encoder = ct.convert( |
|
text_encoder, |
|
convert_to='mlprogram', |
|
inputs=[ |
|
ct.TensorType( |
|
name='input_ids', |
|
shape=(text_batch_dim_shape,) + input_ids.shape[1:], |
|
dtype=input_ids.numpy().dtype |
|
), |
|
ct.TensorType( |
|
name='attention_mask', |
|
shape=(text_batch_dim_shape,) + attention_mask.shape[1:], |
|
dtype=attention_mask.numpy().dtype |
|
)], |
|
outputs=[ |
|
ct.TensorType( |
|
name="features" |
|
), |
|
ct.TensorType( |
|
name="embeddings" |
|
) |
|
], |
|
compute_precision=ct.precision.FLOAT16 if opts.use_fp16 else ct.precision.FLOAT32 |
|
) |
|
|
|
print('Image encoder:', image_encoder, sep='\n') |
|
print('Text encoder:', text_encoder, sep='\n') |
|
|
|
image_encoder.save(join(opts.output_dir, f"{opts.model_name.replace('/', '.')}.image-encoder.mlpackage")) |
|
text_encoder.save(join(opts.output_dir, f"{opts.model_name.replace('/', '.')}.text-encoder.mlpackage")) |
|
|
|
|
|
if __name__ == '__main__': |
|
opts = ArgumentParser() |
|
opts.add_argument('--model_name', |
|
action='store', |
|
type=str, |
|
help='UForm model name') |
|
|
|
opts.add_argument('--text_batchsize_lb', |
|
action='store', |
|
type=int, |
|
help='lower bound of batch size for text encoder') |
|
|
|
opts.add_argument('--text_batchsize_ub', |
|
action='store', |
|
type=int, |
|
help='upper bound of batch size for text encoder') |
|
|
|
opts.add_argument('--image_batchsize_lb', |
|
action='store', |
|
type=int, |
|
help='lower bound of batch size for image encoder') |
|
|
|
opts.add_argument('--image_batchsize_ub', |
|
action='store', |
|
type=int, |
|
help='upper bound of batch size for image encoder') |
|
|
|
opts.add_argument('-use_fp16', |
|
action='store_true', |
|
help='whether to use fp16 for inference or not') |
|
|
|
opts.add_argument('--output_dir', |
|
action='store', |
|
type=str, |
|
help='ouput directory') |
|
|
|
convert_model(opts.parse_args()) |
|
|