--- language: en tags: - generative qa datasets: - eli5 - stackexchange(pets, cooking, gardening, diy, crafts) --- Work by [Frederico Vicente](https://huggingface.co/mrvicente) & [Diogo Tavares](https://huggingface.co/d-c-t). We finetuned BART Large for the task of generative question answering. It was trained on eli5, askScience and stackexchange using the following forums: pets, cooking, gardening, diy, crafts. ### Usage ```python from transformers import ( BartForConditionalGeneration, BartTokenizer ) import torch import json def read_json_file_2_dict(filename, store_dir='.'): with open(f'{store_dir}/{filename}', 'r', encoding='utf-8') as file: return json.load(file) def get_device(): # If there's a GPU available... if torch.cuda.is_available(): device = torch.device("cuda") n_gpus = torch.cuda.device_count() first_gpu = torch.cuda.get_device_name(0) print(f'There are {n_gpus} GPU(s) available.') print(f'GPU gonna be used: {first_gpu}') else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") return device model_name = 'unlisboa/bart_qa_assistant' tokenizer = BartTokenizer.from_pretrained(model_name) device = get_device() model = BartForConditionalGeneration.from_pretrained(model_name).to(device) model.eval() model_input = tokenizer(question, truncation=True, padding=True, return_tensors="pt") generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device),attention_mask=model_input["attention_mask"].to(device), force_words_ids=None, min_length=1, max_length=100, do_sample=True, bad_words_ids=bad_words_ids, early_stopping=True, num_beams=4, temperature=1.0, top_k=None, top_p=None, # eos_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=2, num_return_sequences=1, return_dict_in_generate=True, output_scores=True) response = tokenizer.batch_decode(generated_answers_encoded['sequences'], skip_special_tokens=True,clean_up_tokenization_spaces=True) print(response) ``` Have fun!