using System.Collections; using System.Collections.Generic; using UnityEngine; using Unity.Sentis; using System.IO; using System.Text; using FF = Unity.Sentis.Functional; /* * Phi1.5 Inference Code * =========================== * * Put this script on the Main Camera * * In Assets/StreamingAssets put: * * phi15.sentis (or put in asset folder) * vocab.json * merges.txt * * Install package com.unity.nuget.newtonsoft-json from packagemanger * Install package com.unity.sentis * */ public class RunPhi15: MonoBehaviour { //Drop the tinystories.sentis or onnx file on here if using an asset: //public ModelAsset asset; const BackendType backend = BackendType.GPUCompute; //string outputString = "Once upon a time, there were three bears"; string outputString = "One day an alien came down from Mars. It saw a chicken"; // This is how many tokens you want. It can be adjusted. const int maxTokens = 100; //Make this smaller for more randomness const float predictability = 5f; //Special tokens const int END_OF_TEXT = 50256; //Store the vocabulary string[] tokens; Worker engine; int currentToken = 0; int[] outputTokens = new int[maxTokens]; // Used for special character decoding int[] whiteSpaceCharacters = new int[256]; int[] encodedCharacters = new int[256]; bool runInference = false; //stop after this many tokens const int stopAfter = 100; int totalTokens = 0; string[] merges; Dictionary vocab; void Start() { SetupWhiteSpaceShifts(); LoadVocabulary(); var model1 = ModelLoader.Load(Path.Join(Application.streamingAssetsPath , "phi15.sentis")); int outputIndex = model1.outputs.Count - 1; //var model1 = ModelLoader.Load(asset); //Create a new model to select the random token: FunctionalGraph graph = new FunctionalGraph(); FunctionalTensor input_0 = graph.AddInput(new TensorShape(1, maxTokens)); FunctionalTensor input_1 = graph.AddInput(new TensorShape(1)); FunctionalTensor row = Functional.Select(Functional.Forward(model1, input_0)[outputIndex], 1, input_1); FunctionalTensor output = Functional.Multinomial(predictability * row, 1); Model model2 = graph.Compile(output); engine = new Worker(model2, backend); DecodePrompt(outputString); runInference = true; } // Update is called once per frame void Update() { if (runInference) { RunInference(); } } void RunInference() { using var tokensSoFar = new Tensor(new TensorShape(1, maxTokens), outputTokens); using var index = new Tensor(new TensorShape(1)); index[0] = currentToken; engine.SetInput("input_0", tokensSoFar); engine.SetInput("input_1", index); engine.Schedule(); var probs = engine.PeekOutput() as Tensor; //Debug.Log(probs.shape); probs.CompleteAllPendingOperations(); var result = probs.ReadbackAndClone(); int ID = result[0]; //shift window down if got to the end if (currentToken >= maxTokens - 1) { for (int i = 0; i < maxTokens - 1; i++) outputTokens[i] = outputTokens[i + 1]; currentToken--; } outputTokens[++currentToken] = ID; totalTokens++; if (ID == END_OF_TEXT || totalTokens >= stopAfter) { runInference = false; } else if (ID < 0 || ID >= tokens.Length) { // Really we should use the added_tokens.json for this outputString += " "; } else outputString += GetUnicodeText(tokens[ID]); Debug.Log(outputString); } void DecodePrompt(string text) { var inputTokens = GetTokens(text); for(int i = 0; i < inputTokens.Count; i++) { outputTokens[i] = inputTokens[i]; } currentToken = inputTokens.Count - 1; } void LoadVocabulary() { var jsonText = File.ReadAllText(Path.Join(Application.streamingAssetsPath , "vocab.json")); vocab = Newtonsoft.Json.JsonConvert.DeserializeObject>(jsonText); tokens = new string[vocab.Count]; foreach (var item in vocab) { tokens[item.Value] = item.Key; } merges = File.ReadAllLines(Path.Join(Application.streamingAssetsPath , "merges.txt")); } // Translates encoded special characters to Unicode string GetUnicodeText(string text) { var bytes = Encoding.GetEncoding("ISO-8859-1").GetBytes(ShiftCharacterDown(text)); return Encoding.UTF8.GetString(bytes); } string GetASCIIText(string newText) { var bytes = Encoding.UTF8.GetBytes(newText); return ShiftCharacterUp(Encoding.GetEncoding("ISO-8859-1").GetString(bytes)); } string ShiftCharacterDown(string text) { string outText = ""; foreach (char letter in text) { outText += ((int)letter <= 256) ? letter : (char)whiteSpaceCharacters[(int)(letter - 256)]; } return outText; } string ShiftCharacterUp(string text) { string outText = ""; foreach (char letter in text) { outText += (char)encodedCharacters[(int)letter]; } return outText; } void SetupWhiteSpaceShifts() { for (int i = 0, n = 0; i < 256; i++) { encodedCharacters[i] = i; if (IsWhiteSpace(i)) { encodedCharacters[i] = n + 256; whiteSpaceCharacters[n++] = i; } } } bool IsWhiteSpace(int i) { //returns true if it is a whitespace character return i <= 32 || (i >= 127 && i <= 160) || i == 173; } List GetTokens(string text) { text = GetASCIIText(text); // Start with a list of single characters var inputTokens = new List(); foreach(var letter in text) { inputTokens.Add(letter.ToString()); } ApplyMerges(inputTokens); //Find the ids of the words in the vocab var ids = new List(); foreach(var token in inputTokens) { if (vocab.TryGetValue(token, out int id)) { ids.Add(id); } } return ids; } void ApplyMerges(List inputTokens) { foreach(var merge in merges) { string[] pair = merge.Split(' '); int n = 0; while (n >= 0) { n = inputTokens.IndexOf(pair[0], n); if (n != -1 && n < inputTokens.Count - 1 && inputTokens[n + 1] == pair[1]) { inputTokens[n] += inputTokens[n + 1]; inputTokens.RemoveAt(n + 1); } if (n != -1) n++; } } } private void OnDestroy() { engine?.Dispose(); } }