using System.Collections; using System.Collections.Generic; using UnityEngine; using Unity.Sentis; using System.IO; using Lays = Unity.Sentis.Layers; /* * Neural Cellular Automata Inference Code * ======================================= * * Put this script on the Main Camera * Create an image or quad in the scene. * Assign an unlit transparent material to the image/quad. * Draw the same material into the outputMaterial field * */ public class RunAutomata : MonoBehaviour { //Change this to load a different model: public AutomataNames automataName = AutomataNames.Poop; //Reduce this to make it run slower [Range(0f, 1f)] public float stepSize = 1.0f; const BackendType backend = BackendType.GPUCompute; //Drag your unlit transparent material here for drawing the output public Material outputMaterial; //optional material for average alpha public Material avgAlphaMaterial; public enum AutomataNames { Lizard, Turtle ,Poop}; //Model parameters const int trainedResolution = 40; const int trainedPool = 16; const int alphaBlocks = 4; int m_paddedImageSize; int m_trainedHiddenStates; //Workers to run the networks private IWorker m_WorkerStateUpdate; private IWorker m_WorkerClip; private TensorFloat m_currentStateTensor; private RenderTexture m_currentStateTexture; private RenderTexture m_currentBlockAlphaStateTexture; Ops m_ops; ITensorAllocator m_allocator; void Start() { m_allocator = new TensorCachingAllocator(); m_ops = WorkerFactory.CreateOps(backend, m_allocator); Application.targetFrameRate = 60; LoadAutomataModel(); CreateProcessingModel(); SetupState(); SetupTextures(); DrawDotAt(m_paddedImageSize / 2, m_paddedImageSize / 2); } void LoadAutomataModel() { Model m_ModelStateUpdate = null; switch (automataName) { case AutomataNames.Lizard: m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/lizard.sentis"); break; case AutomataNames.Turtle: m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/turtle.sentis"); break; case AutomataNames.Poop: m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/poop.sentis"); break; } m_trainedHiddenStates = m_ModelStateUpdate.inputs[0].shape[3].value; m_paddedImageSize = trainedResolution + trainedPool * 2; m_WorkerStateUpdate = WorkerFactory.CreateWorker(backend, m_ModelStateUpdate, false); } void CreateProcessingModel() { var m_Model = new Model(); var input0 = new Model.Input { name = "input0", shape = (new SymbolicTensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize)), dataType=DataType.Float }; var input1 = new Model.Input { name = "input1", shape = (new SymbolicTensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize)), dataType = DataType.Float }; var inputStepSize = new Model.Input { name = "inputStepSize", shape = new SymbolicTensorShape(1, 1, 1, 1), dataType = DataType.Float }; m_Model.inputs.Add(input0); m_Model.inputs.Add(input1); m_Model.inputs.Add(inputStepSize); m_Model.AddConstant(new Lays.Constant("aliveRate", new TensorFloat(new TensorShape(1, 1, 1, 1), new[] { 0.1f }))); m_Model.AddConstant(new Lays.Constant("sliceStarts", new int[] { 0, 3, 0, 0 })); m_Model.AddConstant(new Lays.Constant("sliceEnds", new[] { 1, 4 ,m_paddedImageSize, m_paddedImageSize })); m_Model.AddLayer(new Lays.Slice("sliceI0", "input0", "sliceStarts", "sliceEnds")); m_Model.AddLayer(new Lays.MaxPool("maxpool0", "sliceI0", new[] { 3, 3 }, new[] { 1, 1 }, new[] { 1, 1, 1, 1 })); m_Model.AddLayer(new Lays.Greater("pre_life_mask", "maxpool0", "aliveRate")); //INT m_Model.AddLayer(new Lays.Mul("input1_stepsize", "input1", "inputStepSize" )); m_Model.AddLayer(new Lays.RandomUniform("random", new int[] { 1, 1, m_paddedImageSize, m_paddedImageSize}, 0.0f, 1.0f, 0)); m_Model.AddConstant(new Lays.Constant("fireRate", new TensorFloat(new TensorShape(1, 1, 1, 1), new[] { 0.5f }))); m_Model.AddLayer(new Lays.LessOrEqual("lessEqualFireRateINT", "random", "fireRate")); m_Model.AddLayer(new Lays.Cast("lessEqualFireRate", "lessEqualFireRateINT", DataType.Float)); m_Model.AddLayer(new Lays.Mul("mul", "input1_stepsize", "lessEqualFireRate" )); m_Model.AddLayer(new Lays.Add("add", "input0", "mul" )); m_Model.AddLayer(new Lays.Slice("sliceI1", "add", "sliceStarts", "sliceEnds")); m_Model.AddLayer(new Lays.MaxPool("maxpool1", "sliceI1", new [] { 3 ,3 }, new[] { 1, 1 }, new[] {1, 1, 1, 1})); m_Model.AddLayer(new Lays.Greater("post_life_mask", "maxpool1", "aliveRate")); m_Model.AddLayer(new Lays.And("andINT", "pre_life_mask", "post_life_mask")); m_Model.AddLayer(new Lays.Cast("and", "andINT", DataType.Float)); m_Model.AddLayer(new Lays.Mul("outputState", "add", "and" )); m_Model.AddConstant(new Lays.Constant("sliceStarts2", new[] { 0, 0, trainedPool, trainedPool })); m_Model.AddConstant(new Lays.Constant("sliceEnds2", new[] { 1, 4, m_paddedImageSize - trainedPool, m_paddedImageSize - trainedPool })); m_Model.AddLayer(new Lays.Slice("outputImage", "outputState", "sliceStarts2", "sliceEnds2")); m_Model.AddLayer(new Lays.Slice("outputIC", "outputImage", "sliceStarts", "sliceEnds")); int blockSize = trainedResolution / alphaBlocks; m_Model.AddLayer(new Lays.AveragePool("avgPoolBlocks", "outputIC", new[] { blockSize, blockSize }, new[] { blockSize, blockSize }, new[] { 1, 1, 1, 1 })); m_Model.outputs.Add("outputState"); m_Model.outputs.Add("outputImage"); m_Model.outputs.Add("avgPoolBlocks"); m_WorkerClip = WorkerFactory.CreateWorker(backend, m_Model); } void SetupState() { float[] data = new float[1 * m_paddedImageSize * m_paddedImageSize * m_trainedHiddenStates]; m_currentStateTensor = new TensorFloat(new TensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize), data); } void SetupTextures() { m_currentStateTexture = new RenderTexture(trainedResolution, trainedResolution, 0) { enableRandomWrite = true }; outputMaterial.mainTexture = m_currentStateTexture; if (avgAlphaMaterial) { m_currentBlockAlphaStateTexture = new RenderTexture(alphaBlocks, alphaBlocks, 0) { enableRandomWrite = true }; outputMaterial.mainTexture = m_currentBlockAlphaStateTexture; } } void DrawDotAt(int x,int y) { m_currentStateTensor.MakeReadable(); float[] data = m_currentStateTensor.ToReadOnlyArray(); for (int k = 3; k < 16; k++) { data[m_paddedImageSize * m_paddedImageSize * k + m_paddedImageSize * y + x] = 1f; } Replace(ref m_currentStateTensor, new TensorFloat(m_currentStateTensor.shape, data)); } void Update() { DoInference(); if (Input.GetKeyDown(KeyCode.Escape)) { Application.Quit(); } if (Input.GetKeyDown(KeyCode.Space)) { DrawDotAt(UnityEngine.Random.Range(0, m_paddedImageSize), UnityEngine.Random.Range(0, m_paddedImageSize)); } } void Replace(ref TensorFloat A, TensorFloat B) { A?.Dispose(); A = B; } void DoInference() { using var stepSizeTensor = new TensorFloat(new TensorShape(1, 1, 1, 1), new float[] { stepSize }); using var currentStateTensorT = m_ops.Transpose(m_currentStateTensor, new int[] { 0, 2, 3, 1 }); m_WorkerStateUpdate.Execute(currentStateTensorT); TensorFloat outputStateT = m_WorkerStateUpdate.PeekOutput() as TensorFloat; using var outputState = m_ops.Transpose(outputStateT, new int[] { 0, 3, 1, 2 }); var inputs = new Dictionary() { { "input0", m_currentStateTensor }, //float { "input1", outputState }, //float { "inputStepSize", stepSizeTensor } //float }; m_WorkerClip.Execute(inputs); TensorFloat clippedState = m_WorkerClip.PeekOutput("outputState") as TensorFloat; TensorFloat outputImage = m_WorkerClip.PeekOutput("outputImage") as TensorFloat; TensorFloat blockAvgAlphaState = m_WorkerClip.PeekOutput("avgPoolBlocks") as TensorFloat; if (m_currentStateTexture) { TextureConverter.RenderToTexture(outputImage, m_currentStateTexture); } if (m_currentBlockAlphaStateTexture) { TextureConverter.RenderToTexture(blockAvgAlphaState, m_currentBlockAlphaStateTexture); } Replace(ref m_currentStateTensor, clippedState); m_currentStateTensor.TakeOwnership(); } void OnDestroy() { m_currentStateTensor.Dispose(); m_WorkerStateUpdate.Dispose(); m_WorkerClip.Dispose(); m_ops?.Dispose(); m_allocator?.Dispose(); } }