--- license: bigscience-openrail-m widget: - text: CC(Sc1nn(-c2ccc(Cl)cc2)c([MASK])s1)C(=O)NCC1CCCO1 datasets: - ChEMBL pipeline_tag: fill-mask --- # BERT base for SMILES This is bidirectional transformer pretrained on SMILES (simplified molecular-input line-entry system) strings. Example: Amoxicillin ``` O=C([C@@H](c1ccc(cc1)O)N)N[C@@H]1C(=O)N2[C@@H]1SC([C@@H]2C(=O)O)(C)C ``` Two training objectives were used: 1. masked language modeling 2. molecular-formula validity prediction ## Intended uses This model is primarily aimed at being fine-tuned on the following tasks: - molecule classification - molecule-to-gene-expression mapping - cell targeting ## How to use in your code ```python from transformers import BertTokenizerFast, BertModel checkpoint = 'unikei/bert-base-smiles' tokenizer = BertTokenizerFast.from_pretrained(checkpoint) model = BertModel.from_pretrained(checkpoint) example = 'O=C([C@@H](c1ccc(cc1)O)N)N[C@@H]1C(=O)N2[C@@H]1SC([C@@H]2C(=O)O)(C)C' tokens = tokenizer(example, return_tensors='pt') predictions = model(**tokens) ```