--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer datasets: - hatexplain metrics: - accuracy - precision - recall - f1 model-index: - name: gpt2-hatexplain results: - task: name: Text Classification type: text-classification dataset: name: hatexplain type: hatexplain config: plain_text split: validation args: plain_text metrics: - name: Accuracy type: accuracy value: 0.6917879417879418 - name: Precision type: precision value: 0.6837783251259969 - name: Recall type: recall value: 0.6917879417879418 - name: F1 type: f1 value: 0.6822435740647693 --- # gpt2-hatexplain This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the hatexplain dataset. It achieves the following results on the evaluation set: - Loss: 0.7507 - Accuracy: 0.6918 - Precision: 0.6838 - Recall: 0.6918 - F1: 0.6822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7396 | 1.0 | 962 | 0.7567 | 0.6790 | 0.6713 | 0.6790 | 0.6641 | | 0.6697 | 2.0 | 1924 | 0.7486 | 0.6842 | 0.6769 | 0.6842 | 0.6783 | | 0.7573 | 3.0 | 2886 | 0.7685 | 0.6748 | 0.6658 | 0.6748 | 0.6656 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.21.0