--- library_name: peft license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - hatexplain metrics: - accuracy - precision - recall - f1 model-index: - name: finetuned-distilbert-lora-hatexplain results: [] --- # finetuned-distilbert-lora-hatexplain This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the hatexplain dataset. It achieves the following results on the evaluation set: - Loss: 0.7335 - Accuracy: 0.6767 - Precision: 0.6679 - Recall: 0.6767 - F1: 0.6703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7301 | 1.0 | 962 | 0.7683 | 0.6561 | 0.6475 | 0.6561 | 0.6446 | | 0.747 | 2.0 | 1924 | 0.7493 | 0.6644 | 0.6611 | 0.6644 | 0.6597 | | 0.7918 | 3.0 | 2886 | 0.7332 | 0.6774 | 0.6712 | 0.6774 | 0.6710 | | 0.6507 | 4.0 | 3848 | 0.7357 | 0.6805 | 0.6735 | 0.6805 | 0.6747 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.21.0