--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-CV8-ro results: [] --- # wav2vec2-xls-r-300m-CV8-ro This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1578 - Wer: 0.6040 - Cer: 0.0475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.9736 | 3.62 | 500 | 2.9508 | 1.0 | 1.0 | | 1.3293 | 7.25 | 1000 | 0.3330 | 0.8407 | 0.0862 | | 0.956 | 10.87 | 1500 | 0.2042 | 0.6872 | 0.0602 | | 0.9509 | 14.49 | 2000 | 0.2184 | 0.7088 | 0.0652 | | 0.9272 | 18.12 | 2500 | 0.2312 | 0.7211 | 0.0703 | | 0.8561 | 21.74 | 3000 | 0.2158 | 0.6838 | 0.0631 | | 0.8258 | 25.36 | 3500 | 0.1970 | 0.6844 | 0.0601 | | 0.7993 | 28.98 | 4000 | 0.1895 | 0.6698 | 0.0577 | | 0.7525 | 32.61 | 4500 | 0.1845 | 0.6453 | 0.0550 | | 0.7211 | 36.23 | 5000 | 0.1781 | 0.6274 | 0.0531 | | 0.677 | 39.85 | 5500 | 0.1732 | 0.6188 | 0.0514 | | 0.6517 | 43.48 | 6000 | 0.1691 | 0.6177 | 0.0503 | | 0.6326 | 47.1 | 6500 | 0.1619 | 0.6045 | 0.0479 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0