--- license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_qa_5e-5_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - name: Accuracy type: accuracy value: 0.5839240506329114 --- # lmind_hotpot_train8000_eval7405_v1_qa_5e-5_lora2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.2298 - Accuracy: 0.5839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.798 | 1.0 | 250 | 1.8213 | 0.6067 | | 1.7 | 2.0 | 500 | 1.8046 | 0.6077 | | 1.5869 | 3.0 | 750 | 1.8293 | 0.6071 | | 1.4349 | 4.0 | 1000 | 1.8974 | 0.6043 | | 1.3111 | 5.0 | 1250 | 1.9769 | 0.6015 | | 1.197 | 6.0 | 1500 | 2.0635 | 0.5992 | | 1.0729 | 7.0 | 1750 | 2.1523 | 0.5975 | | 0.9833 | 8.0 | 2000 | 2.2640 | 0.5947 | | 0.8672 | 9.0 | 2250 | 2.3643 | 0.5924 | | 0.7883 | 10.0 | 2500 | 2.4598 | 0.5908 | | 0.6879 | 11.0 | 2750 | 2.5669 | 0.5890 | | 0.6295 | 12.0 | 3000 | 2.7000 | 0.5885 | | 0.5545 | 13.0 | 3250 | 2.8281 | 0.5851 | | 0.5208 | 14.0 | 3500 | 2.8794 | 0.5853 | | 0.4679 | 15.0 | 3750 | 2.9184 | 0.5863 | | 0.4464 | 16.0 | 4000 | 3.0791 | 0.5852 | | 0.4136 | 17.0 | 4250 | 3.0832 | 0.5856 | | 0.4021 | 18.0 | 4500 | 3.0944 | 0.5847 | | 0.3776 | 19.0 | 4750 | 3.2120 | 0.5828 | | 0.373 | 20.0 | 5000 | 3.2298 | 0.5839 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1