--- license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_qa_3e-5_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - name: Accuracy type: accuracy value: 0.5824050632911393 --- # lmind_hotpot_train8000_eval7405_v1_qa_3e-5_lora2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set: - Loss: 2.9797 - Accuracy: 0.5824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8255 | 1.0 | 250 | 1.8392 | 0.6054 | | 1.7368 | 2.0 | 500 | 1.8111 | 0.6078 | | 1.6689 | 3.0 | 750 | 1.8103 | 0.6075 | | 1.5555 | 4.0 | 1000 | 1.8414 | 0.6067 | | 1.4559 | 5.0 | 1250 | 1.8992 | 0.6038 | | 1.3514 | 6.0 | 1500 | 1.9584 | 0.6018 | | 1.2491 | 7.0 | 1750 | 2.0300 | 0.6000 | | 1.1749 | 8.0 | 2000 | 2.1051 | 0.5982 | | 1.0769 | 9.0 | 2250 | 2.1948 | 0.5954 | | 1.0134 | 10.0 | 2500 | 2.2515 | 0.5943 | | 0.9209 | 11.0 | 2750 | 2.3421 | 0.5921 | | 0.8636 | 12.0 | 3000 | 2.4443 | 0.5905 | | 0.7866 | 13.0 | 3250 | 2.5574 | 0.588 | | 0.7448 | 14.0 | 3500 | 2.5800 | 0.5867 | | 0.6709 | 15.0 | 3750 | 2.6912 | 0.5846 | | 0.6439 | 16.0 | 4000 | 2.7546 | 0.5853 | | 0.5869 | 17.0 | 4250 | 2.7997 | 0.5831 | | 0.5596 | 18.0 | 4500 | 2.8435 | 0.5833 | | 0.5205 | 19.0 | 4750 | 2.9510 | 0.5833 | | 0.5045 | 20.0 | 5000 | 2.9797 | 0.5824 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1